Don’t panic: An intron-centric guide to alternative splicing

Autores
Petrillo, Ezequiel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This review is an attempt to establish concepts of splicing and alternative splicing giving proper relevance to introns, the key actors in this mechanism. It might also work as a guide for those who found their favorite gene undergoes alternative splicing and could benefit from gaining a theoretical framework to understand the possible impacts of this process. This is not a thorough review of all the work in the field, but rather a critical review of some of the most relevant work done to understand the underlying mechanisms of splicing and the key questions that remain unanswered such as: What is the physiological relevance of alternative splicing? What are the functions of the different outcomes? To what extent do different alternative splicing types contribute to the proteome? Intron retention is the most frequent alternative splicing event in plants and, although scientifically neglected, it is also common in animals. This is a heterogeneous type of alternative splicing that includes different subtypes with features that have distinctive consequences in the resulting transcripts. Remarkably, intron retention can be a dead end for a transcript, but it could also be a stable intermediate whose processing is resumed upon a particular signal or change in the cell status. New sequencing technologies combined with the study of intron lariats in different conditions might help to answer key questions and could help us to understand the actual relevance of introns in gene expression regulation.
Fil: Petrillo, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Materia
INTRONS
EXONS
ALTERNATIVE SPLICING
RETENTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/225487

id CONICETDig_e18fa10dfab252cca7d44f70f9a9db63
oai_identifier_str oai:ri.conicet.gov.ar:11336/225487
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Don’t panic: An intron-centric guide to alternative splicingPetrillo, EzequielINTRONSEXONSALTERNATIVE SPLICINGRETENTIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1This review is an attempt to establish concepts of splicing and alternative splicing giving proper relevance to introns, the key actors in this mechanism. It might also work as a guide for those who found their favorite gene undergoes alternative splicing and could benefit from gaining a theoretical framework to understand the possible impacts of this process. This is not a thorough review of all the work in the field, but rather a critical review of some of the most relevant work done to understand the underlying mechanisms of splicing and the key questions that remain unanswered such as: What is the physiological relevance of alternative splicing? What are the functions of the different outcomes? To what extent do different alternative splicing types contribute to the proteome? Intron retention is the most frequent alternative splicing event in plants and, although scientifically neglected, it is also common in animals. This is a heterogeneous type of alternative splicing that includes different subtypes with features that have distinctive consequences in the resulting transcripts. Remarkably, intron retention can be a dead end for a transcript, but it could also be a stable intermediate whose processing is resumed upon a particular signal or change in the cell status. New sequencing technologies combined with the study of intron lariats in different conditions might help to answer key questions and could help us to understand the actual relevance of introns in gene expression regulation.Fil: Petrillo, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaAmerican Society of Plant Biologist2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225487Petrillo, Ezequiel; Don’t panic: An intron-centric guide to alternative splicing; American Society of Plant Biologist; Plant Cell; 35; 6; 1-2023; 1752-17611040-4651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/plcell/koad009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:32Zoai:ri.conicet.gov.ar:11336/225487instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:33.198CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Don’t panic: An intron-centric guide to alternative splicing
title Don’t panic: An intron-centric guide to alternative splicing
spellingShingle Don’t panic: An intron-centric guide to alternative splicing
Petrillo, Ezequiel
INTRONS
EXONS
ALTERNATIVE SPLICING
RETENTION
title_short Don’t panic: An intron-centric guide to alternative splicing
title_full Don’t panic: An intron-centric guide to alternative splicing
title_fullStr Don’t panic: An intron-centric guide to alternative splicing
title_full_unstemmed Don’t panic: An intron-centric guide to alternative splicing
title_sort Don’t panic: An intron-centric guide to alternative splicing
dc.creator.none.fl_str_mv Petrillo, Ezequiel
author Petrillo, Ezequiel
author_facet Petrillo, Ezequiel
author_role author
dc.subject.none.fl_str_mv INTRONS
EXONS
ALTERNATIVE SPLICING
RETENTION
topic INTRONS
EXONS
ALTERNATIVE SPLICING
RETENTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This review is an attempt to establish concepts of splicing and alternative splicing giving proper relevance to introns, the key actors in this mechanism. It might also work as a guide for those who found their favorite gene undergoes alternative splicing and could benefit from gaining a theoretical framework to understand the possible impacts of this process. This is not a thorough review of all the work in the field, but rather a critical review of some of the most relevant work done to understand the underlying mechanisms of splicing and the key questions that remain unanswered such as: What is the physiological relevance of alternative splicing? What are the functions of the different outcomes? To what extent do different alternative splicing types contribute to the proteome? Intron retention is the most frequent alternative splicing event in plants and, although scientifically neglected, it is also common in animals. This is a heterogeneous type of alternative splicing that includes different subtypes with features that have distinctive consequences in the resulting transcripts. Remarkably, intron retention can be a dead end for a transcript, but it could also be a stable intermediate whose processing is resumed upon a particular signal or change in the cell status. New sequencing technologies combined with the study of intron lariats in different conditions might help to answer key questions and could help us to understand the actual relevance of introns in gene expression regulation.
Fil: Petrillo, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
description This review is an attempt to establish concepts of splicing and alternative splicing giving proper relevance to introns, the key actors in this mechanism. It might also work as a guide for those who found their favorite gene undergoes alternative splicing and could benefit from gaining a theoretical framework to understand the possible impacts of this process. This is not a thorough review of all the work in the field, but rather a critical review of some of the most relevant work done to understand the underlying mechanisms of splicing and the key questions that remain unanswered such as: What is the physiological relevance of alternative splicing? What are the functions of the different outcomes? To what extent do different alternative splicing types contribute to the proteome? Intron retention is the most frequent alternative splicing event in plants and, although scientifically neglected, it is also common in animals. This is a heterogeneous type of alternative splicing that includes different subtypes with features that have distinctive consequences in the resulting transcripts. Remarkably, intron retention can be a dead end for a transcript, but it could also be a stable intermediate whose processing is resumed upon a particular signal or change in the cell status. New sequencing technologies combined with the study of intron lariats in different conditions might help to answer key questions and could help us to understand the actual relevance of introns in gene expression regulation.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/225487
Petrillo, Ezequiel; Don’t panic: An intron-centric guide to alternative splicing; American Society of Plant Biologist; Plant Cell; 35; 6; 1-2023; 1752-1761
1040-4651
CONICET Digital
CONICET
url http://hdl.handle.net/11336/225487
identifier_str_mv Petrillo, Ezequiel; Don’t panic: An intron-centric guide to alternative splicing; American Society of Plant Biologist; Plant Cell; 35; 6; 1-2023; 1752-1761
1040-4651
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/plcell/koad009
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society of Plant Biologist
publisher.none.fl_str_mv American Society of Plant Biologist
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614217394552832
score 13.070432