Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)

Autores
Capoulat, Maria Eugenia; Minsky, Daniel Mauricio; Kreiner, Andres Juan
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5–6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT.
Fil: Capoulat, Maria Eugenia. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Minsky, Daniel Mauricio. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kreiner, Andres Juan. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Accelerator-Based Bnct
9be(D,N)10b Reaction
Monte-Carlo-Simulations
Brain Tumor Treatment
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33677

id CONICETDig_e1138fba6faf13ebb6287e6b6bbfb71f
oai_identifier_str oai:ri.conicet.gov.ar:11336/33677
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)Capoulat, Maria EugeniaMinsky, Daniel MauricioKreiner, Andres JuanAccelerator-Based Bnct9be(D,N)10b ReactionMonte-Carlo-SimulationsBrain Tumor Treatmenthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5–6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT.Fil: Capoulat, Maria Eugenia. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Minsky, Daniel Mauricio. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kreiner, Andres Juan. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33677Kreiner, Andres Juan; Capoulat, Maria Eugenia; Minsky, Daniel Mauricio; Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT); Elsevier; Physica Medica; 30; 2; 7-2013; 133-1461120-1797CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejmp.2013.07.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1120179713001129info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:41Zoai:ri.conicet.gov.ar:11336/33677instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:41.972CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
title Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
spellingShingle Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
Capoulat, Maria Eugenia
Accelerator-Based Bnct
9be(D,N)10b Reaction
Monte-Carlo-Simulations
Brain Tumor Treatment
title_short Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
title_full Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
title_fullStr Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
title_full_unstemmed Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
title_sort Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT)
dc.creator.none.fl_str_mv Capoulat, Maria Eugenia
Minsky, Daniel Mauricio
Kreiner, Andres Juan
author Capoulat, Maria Eugenia
author_facet Capoulat, Maria Eugenia
Minsky, Daniel Mauricio
Kreiner, Andres Juan
author_role author
author2 Minsky, Daniel Mauricio
Kreiner, Andres Juan
author2_role author
author
dc.subject.none.fl_str_mv Accelerator-Based Bnct
9be(D,N)10b Reaction
Monte-Carlo-Simulations
Brain Tumor Treatment
topic Accelerator-Based Bnct
9be(D,N)10b Reaction
Monte-Carlo-Simulations
Brain Tumor Treatment
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5–6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT.
Fil: Capoulat, Maria Eugenia. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Minsky, Daniel Mauricio. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kreiner, Andres Juan. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5–6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33677
Kreiner, Andres Juan; Capoulat, Maria Eugenia; Minsky, Daniel Mauricio; Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT); Elsevier; Physica Medica; 30; 2; 7-2013; 133-146
1120-1797
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33677
identifier_str_mv Kreiner, Andres Juan; Capoulat, Maria Eugenia; Minsky, Daniel Mauricio; Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT); Elsevier; Physica Medica; 30; 2; 7-2013; 133-146
1120-1797
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejmp.2013.07.001
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1120179713001129
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614375914078208
score 13.070432