Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation.
- Autores
- Rengifo Herrera, Julian Andres; Pulgarin, Cesar
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nitrogen and sulfur co-doped and N-doped TiO2 anatase TKP 102 (Tayca) were prepared by manual grinding with thiourea and urea, respectively, and annealing at 400 C. Both materials showed visible-light absorption as measured by Diffuse Reflectance Spectroscopy (DRS). Interstitial N-doping, anionic and cationic S- doping was found when the TiO2 was doped with thiourea while TiO2 doped with urea showed only the presence of interstitial N-doping as measured by X-ray Photo-electron Spectroscopy (XPS). The N content on the surface of N-doped TKP 102 photocatalyst was 2.85 at.% and higher than the N content in the N, S co-doped TiO2 photocatalyst (0.6 at.%). The photocatalytic activity of the doped catalysts was tested using phenol and Escherichia coli as chemical and biological targets, respectively, using N, S co-doped, N-doped TiO2, undoped Degussa P-25 and undoped TKP 102 powders under simulated solar light. It was found that undoped Degussa P-25 was the photocatalyst with the highest photocatalytic activity towards phenol oxidation and E. coli inactivation. N, S co-doped powders showed almost the same photocatalytic activity as undoped TKP 102 while N-doped TKP 102 was the less active photocatalyst probably due the N impurities on the TiO2 acting as recombination centers.
Fil: Rengifo Herrera, Julian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
Fil: Pulgarin, Cesar. Ecole Polytechnique Federale de Lausanne; Suiza - Materia
-
Heterogeneous Photocatalysis
Helio-Photocatalysis
Nitrogen Doped Tio2
Sulfur Doped Tio2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3024
Ver los metadatos del registro completo
id |
CONICETDig_e0f5df6bf4b3ece3035112dc5975b9eb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3024 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation.Rengifo Herrera, Julian AndresPulgarin, CesarHeterogeneous PhotocatalysisHelio-PhotocatalysisNitrogen Doped Tio2Sulfur Doped Tio2https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Nitrogen and sulfur co-doped and N-doped TiO2 anatase TKP 102 (Tayca) were prepared by manual grinding with thiourea and urea, respectively, and annealing at 400 C. Both materials showed visible-light absorption as measured by Diffuse Reflectance Spectroscopy (DRS). Interstitial N-doping, anionic and cationic S- doping was found when the TiO2 was doped with thiourea while TiO2 doped with urea showed only the presence of interstitial N-doping as measured by X-ray Photo-electron Spectroscopy (XPS). The N content on the surface of N-doped TKP 102 photocatalyst was 2.85 at.% and higher than the N content in the N, S co-doped TiO2 photocatalyst (0.6 at.%). The photocatalytic activity of the doped catalysts was tested using phenol and Escherichia coli as chemical and biological targets, respectively, using N, S co-doped, N-doped TiO2, undoped Degussa P-25 and undoped TKP 102 powders under simulated solar light. It was found that undoped Degussa P-25 was the photocatalyst with the highest photocatalytic activity towards phenol oxidation and E. coli inactivation. N, S co-doped powders showed almost the same photocatalytic activity as undoped TKP 102 while N-doped TKP 102 was the less active photocatalyst probably due the N impurities on the TiO2 acting as recombination centers.Fil: Rengifo Herrera, Julian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Pulgarin, Cesar. Ecole Polytechnique Federale de Lausanne; SuizaPergamon-elsevier Science Ltd2009-10-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3024Rengifo Herrera, Julian Andres; Pulgarin, Cesar; Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation.; Pergamon-elsevier Science Ltd; Solar Energy; 84; 1; 14-10-2009; 37-430038-092Xenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://dx.doi.com/10.1016/j.solener.2009.09.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0038092X09002163info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:05Zoai:ri.conicet.gov.ar:11336/3024instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:05.36CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. |
title |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. |
spellingShingle |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Rengifo Herrera, Julian Andres Heterogeneous Photocatalysis Helio-Photocatalysis Nitrogen Doped Tio2 Sulfur Doped Tio2 |
title_short |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. |
title_full |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. |
title_fullStr |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. |
title_full_unstemmed |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. |
title_sort |
Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. |
dc.creator.none.fl_str_mv |
Rengifo Herrera, Julian Andres Pulgarin, Cesar |
author |
Rengifo Herrera, Julian Andres |
author_facet |
Rengifo Herrera, Julian Andres Pulgarin, Cesar |
author_role |
author |
author2 |
Pulgarin, Cesar |
author2_role |
author |
dc.subject.none.fl_str_mv |
Heterogeneous Photocatalysis Helio-Photocatalysis Nitrogen Doped Tio2 Sulfur Doped Tio2 |
topic |
Heterogeneous Photocatalysis Helio-Photocatalysis Nitrogen Doped Tio2 Sulfur Doped Tio2 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nitrogen and sulfur co-doped and N-doped TiO2 anatase TKP 102 (Tayca) were prepared by manual grinding with thiourea and urea, respectively, and annealing at 400 C. Both materials showed visible-light absorption as measured by Diffuse Reflectance Spectroscopy (DRS). Interstitial N-doping, anionic and cationic S- doping was found when the TiO2 was doped with thiourea while TiO2 doped with urea showed only the presence of interstitial N-doping as measured by X-ray Photo-electron Spectroscopy (XPS). The N content on the surface of N-doped TKP 102 photocatalyst was 2.85 at.% and higher than the N content in the N, S co-doped TiO2 photocatalyst (0.6 at.%). The photocatalytic activity of the doped catalysts was tested using phenol and Escherichia coli as chemical and biological targets, respectively, using N, S co-doped, N-doped TiO2, undoped Degussa P-25 and undoped TKP 102 powders under simulated solar light. It was found that undoped Degussa P-25 was the photocatalyst with the highest photocatalytic activity towards phenol oxidation and E. coli inactivation. N, S co-doped powders showed almost the same photocatalytic activity as undoped TKP 102 while N-doped TKP 102 was the less active photocatalyst probably due the N impurities on the TiO2 acting as recombination centers. Fil: Rengifo Herrera, Julian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina Fil: Pulgarin, Cesar. Ecole Polytechnique Federale de Lausanne; Suiza |
description |
Nitrogen and sulfur co-doped and N-doped TiO2 anatase TKP 102 (Tayca) were prepared by manual grinding with thiourea and urea, respectively, and annealing at 400 C. Both materials showed visible-light absorption as measured by Diffuse Reflectance Spectroscopy (DRS). Interstitial N-doping, anionic and cationic S- doping was found when the TiO2 was doped with thiourea while TiO2 doped with urea showed only the presence of interstitial N-doping as measured by X-ray Photo-electron Spectroscopy (XPS). The N content on the surface of N-doped TKP 102 photocatalyst was 2.85 at.% and higher than the N content in the N, S co-doped TiO2 photocatalyst (0.6 at.%). The photocatalytic activity of the doped catalysts was tested using phenol and Escherichia coli as chemical and biological targets, respectively, using N, S co-doped, N-doped TiO2, undoped Degussa P-25 and undoped TKP 102 powders under simulated solar light. It was found that undoped Degussa P-25 was the photocatalyst with the highest photocatalytic activity towards phenol oxidation and E. coli inactivation. N, S co-doped powders showed almost the same photocatalytic activity as undoped TKP 102 while N-doped TKP 102 was the less active photocatalyst probably due the N impurities on the TiO2 acting as recombination centers. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3024 Rengifo Herrera, Julian Andres; Pulgarin, Cesar; Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation.; Pergamon-elsevier Science Ltd; Solar Energy; 84; 1; 14-10-2009; 37-43 0038-092X |
url |
http://hdl.handle.net/11336/3024 |
identifier_str_mv |
Rengifo Herrera, Julian Andres; Pulgarin, Cesar; Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation.; Pergamon-elsevier Science Ltd; Solar Energy; 84; 1; 14-10-2009; 37-43 0038-092X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://dx.doi.com/10.1016/j.solener.2009.09.008 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0038092X09002163 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269736131362816 |
score |
13.13397 |