Study of statistic stability to select high-yielding and stable peach genotypes
- Autores
- Maulión, Evangelina; Valentini, Gabriel; Ornella, Leonardo Alfredo; Pairoba, Claudio Fabián; Daorden, María Elena; Cervigni, Gerardo Domingo Lucio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In peach breeding, suitable identification methods for performance stability studies as well as the associations between stability parameters are poorly understood. Therefore, the aims of this work were to compare parametric (S2 ij , biS2 xi, Wi, i and Ii) and non-parametric (S(1) i , S(2) i , S(3) i and Pi) stability measures, evaluate the level of association among them, select superior accessions and identify major environmental variables as causes of yield variation among years. Fruit yield stability was studied using data of fruit yield from 25 peach genotypes under three environments, arranged in a completely randomized design with three replications. Frosts, chilling, heat, rainfall and the interactions among them were considered as explanatory variables of yield variation through years. Crossover was the main effect of genotype-byenvironment interaction indicating that the selection of high-yielding and stable peach genotype would be a laborious task for breeders. The interaction between rainfall and heat accumulation during fruit development period explained 96.7% of yield variation among years. Yield (Yi) exhibited negative correlation with Wi and i, while Wi showed negative association with Pi. S(1) i , S(2) i , and S(3) i were positively associated with each other, showing that just one of these three statistics would be sufficient to select stable accessions although they were not correlated with Yi. Fruit yield was positively correlated with Pi and Ii, these two measures were also positively associated with each other, and therefore, only one of them would be enough for selection of superior peach accessions. Both, Pi and Ii statistics revealed that accessions Sunprince, Flameprince, María Aurelia, Vega, Starlite and Flavorcrest were the most stable and high-yielding genotypes across environments
Fil: Maulión, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosinteticos y Bioquimicos. Universidad Nacional de Rosario. Facultad de Cs.bioquímicas y Farmaceuticas. Centro de Estudios Fotosinteticos y Bioquimicos; Argentina
Fil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Ornella, Leonardo Alfredo. NIDERA S.A; Argentina
Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario. Facultad de Psicología. Secretaria de Ciencia y Tecnología; Argentina
Fil: Daorden, María Elena. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosinteticos y Bioquimicos. Universidad Nacional de Rosario. Facultad de Cs.bioquímicas y Farmaceuticas. Centro de Estudios Fotosinteticos y Bioquimicos; Argentina - Materia
-
Multi-Environments Trials
Parametric And Non-Parametric Statistics
Peach Breeding
Prunus Persica L
Rank Correlation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29710
Ver los metadatos del registro completo
id |
CONICETDig_e0b29e9d03c36a593df89947266cece9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29710 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Study of statistic stability to select high-yielding and stable peach genotypesMaulión, EvangelinaValentini, GabrielOrnella, Leonardo AlfredoPairoba, Claudio FabiánDaorden, María ElenaCervigni, Gerardo Domingo LucioMulti-Environments TrialsParametric And Non-Parametric StatisticsPeach BreedingPrunus Persica LRank CorrelationIn peach breeding, suitable identification methods for performance stability studies as well as the associations between stability parameters are poorly understood. Therefore, the aims of this work were to compare parametric (S2 ij , biS2 xi, Wi, i and Ii) and non-parametric (S(1) i , S(2) i , S(3) i and Pi) stability measures, evaluate the level of association among them, select superior accessions and identify major environmental variables as causes of yield variation among years. Fruit yield stability was studied using data of fruit yield from 25 peach genotypes under three environments, arranged in a completely randomized design with three replications. Frosts, chilling, heat, rainfall and the interactions among them were considered as explanatory variables of yield variation through years. Crossover was the main effect of genotype-byenvironment interaction indicating that the selection of high-yielding and stable peach genotype would be a laborious task for breeders. The interaction between rainfall and heat accumulation during fruit development period explained 96.7% of yield variation among years. Yield (Yi) exhibited negative correlation with Wi and i, while Wi showed negative association with Pi. S(1) i , S(2) i , and S(3) i were positively associated with each other, showing that just one of these three statistics would be sufficient to select stable accessions although they were not correlated with Yi. Fruit yield was positively correlated with Pi and Ii, these two measures were also positively associated with each other, and therefore, only one of them would be enough for selection of superior peach accessions. Both, Pi and Ii statistics revealed that accessions Sunprince, Flameprince, María Aurelia, Vega, Starlite and Flavorcrest were the most stable and high-yielding genotypes across environmentsFil: Maulión, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosinteticos y Bioquimicos. Universidad Nacional de Rosario. Facultad de Cs.bioquímicas y Farmaceuticas. Centro de Estudios Fotosinteticos y Bioquimicos; ArgentinaFil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Ornella, Leonardo Alfredo. NIDERA S.A; ArgentinaFil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario. Facultad de Psicología. Secretaria de Ciencia y Tecnología; ArgentinaFil: Daorden, María Elena. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosinteticos y Bioquimicos. Universidad Nacional de Rosario. Facultad de Cs.bioquímicas y Farmaceuticas. Centro de Estudios Fotosinteticos y Bioquimicos; ArgentinaElsevier Science2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29710Maulión, Evangelina; Valentini, Gabriel; Ornella, Leonardo Alfredo; Pairoba, Claudio Fabián; Daorden, María Elena; et al.; Study of statistic stability to select high-yielding and stable peach genotypes; Elsevier Science; Scientia Horticulturae; 175; 8-2014; 258-2680304-4238CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304423814003422info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scienta.2014.06.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:08Zoai:ri.conicet.gov.ar:11336/29710instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:09.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Study of statistic stability to select high-yielding and stable peach genotypes |
title |
Study of statistic stability to select high-yielding and stable peach genotypes |
spellingShingle |
Study of statistic stability to select high-yielding and stable peach genotypes Maulión, Evangelina Multi-Environments Trials Parametric And Non-Parametric Statistics Peach Breeding Prunus Persica L Rank Correlation |
title_short |
Study of statistic stability to select high-yielding and stable peach genotypes |
title_full |
Study of statistic stability to select high-yielding and stable peach genotypes |
title_fullStr |
Study of statistic stability to select high-yielding and stable peach genotypes |
title_full_unstemmed |
Study of statistic stability to select high-yielding and stable peach genotypes |
title_sort |
Study of statistic stability to select high-yielding and stable peach genotypes |
dc.creator.none.fl_str_mv |
Maulión, Evangelina Valentini, Gabriel Ornella, Leonardo Alfredo Pairoba, Claudio Fabián Daorden, María Elena Cervigni, Gerardo Domingo Lucio |
author |
Maulión, Evangelina |
author_facet |
Maulión, Evangelina Valentini, Gabriel Ornella, Leonardo Alfredo Pairoba, Claudio Fabián Daorden, María Elena Cervigni, Gerardo Domingo Lucio |
author_role |
author |
author2 |
Valentini, Gabriel Ornella, Leonardo Alfredo Pairoba, Claudio Fabián Daorden, María Elena Cervigni, Gerardo Domingo Lucio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Multi-Environments Trials Parametric And Non-Parametric Statistics Peach Breeding Prunus Persica L Rank Correlation |
topic |
Multi-Environments Trials Parametric And Non-Parametric Statistics Peach Breeding Prunus Persica L Rank Correlation |
dc.description.none.fl_txt_mv |
In peach breeding, suitable identification methods for performance stability studies as well as the associations between stability parameters are poorly understood. Therefore, the aims of this work were to compare parametric (S2 ij , biS2 xi, Wi, i and Ii) and non-parametric (S(1) i , S(2) i , S(3) i and Pi) stability measures, evaluate the level of association among them, select superior accessions and identify major environmental variables as causes of yield variation among years. Fruit yield stability was studied using data of fruit yield from 25 peach genotypes under three environments, arranged in a completely randomized design with three replications. Frosts, chilling, heat, rainfall and the interactions among them were considered as explanatory variables of yield variation through years. Crossover was the main effect of genotype-byenvironment interaction indicating that the selection of high-yielding and stable peach genotype would be a laborious task for breeders. The interaction between rainfall and heat accumulation during fruit development period explained 96.7% of yield variation among years. Yield (Yi) exhibited negative correlation with Wi and i, while Wi showed negative association with Pi. S(1) i , S(2) i , and S(3) i were positively associated with each other, showing that just one of these three statistics would be sufficient to select stable accessions although they were not correlated with Yi. Fruit yield was positively correlated with Pi and Ii, these two measures were also positively associated with each other, and therefore, only one of them would be enough for selection of superior peach accessions. Both, Pi and Ii statistics revealed that accessions Sunprince, Flameprince, María Aurelia, Vega, Starlite and Flavorcrest were the most stable and high-yielding genotypes across environments Fil: Maulión, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosinteticos y Bioquimicos. Universidad Nacional de Rosario. Facultad de Cs.bioquímicas y Farmaceuticas. Centro de Estudios Fotosinteticos y Bioquimicos; Argentina Fil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; Argentina Fil: Ornella, Leonardo Alfredo. NIDERA S.A; Argentina Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario. Facultad de Psicología. Secretaria de Ciencia y Tecnología; Argentina Fil: Daorden, María Elena. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosinteticos y Bioquimicos. Universidad Nacional de Rosario. Facultad de Cs.bioquímicas y Farmaceuticas. Centro de Estudios Fotosinteticos y Bioquimicos; Argentina |
description |
In peach breeding, suitable identification methods for performance stability studies as well as the associations between stability parameters are poorly understood. Therefore, the aims of this work were to compare parametric (S2 ij , biS2 xi, Wi, i and Ii) and non-parametric (S(1) i , S(2) i , S(3) i and Pi) stability measures, evaluate the level of association among them, select superior accessions and identify major environmental variables as causes of yield variation among years. Fruit yield stability was studied using data of fruit yield from 25 peach genotypes under three environments, arranged in a completely randomized design with three replications. Frosts, chilling, heat, rainfall and the interactions among them were considered as explanatory variables of yield variation through years. Crossover was the main effect of genotype-byenvironment interaction indicating that the selection of high-yielding and stable peach genotype would be a laborious task for breeders. The interaction between rainfall and heat accumulation during fruit development period explained 96.7% of yield variation among years. Yield (Yi) exhibited negative correlation with Wi and i, while Wi showed negative association with Pi. S(1) i , S(2) i , and S(3) i were positively associated with each other, showing that just one of these three statistics would be sufficient to select stable accessions although they were not correlated with Yi. Fruit yield was positively correlated with Pi and Ii, these two measures were also positively associated with each other, and therefore, only one of them would be enough for selection of superior peach accessions. Both, Pi and Ii statistics revealed that accessions Sunprince, Flameprince, María Aurelia, Vega, Starlite and Flavorcrest were the most stable and high-yielding genotypes across environments |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29710 Maulión, Evangelina; Valentini, Gabriel; Ornella, Leonardo Alfredo; Pairoba, Claudio Fabián; Daorden, María Elena; et al.; Study of statistic stability to select high-yielding and stable peach genotypes; Elsevier Science; Scientia Horticulturae; 175; 8-2014; 258-268 0304-4238 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29710 |
identifier_str_mv |
Maulión, Evangelina; Valentini, Gabriel; Ornella, Leonardo Alfredo; Pairoba, Claudio Fabián; Daorden, María Elena; et al.; Study of statistic stability to select high-yielding and stable peach genotypes; Elsevier Science; Scientia Horticulturae; 175; 8-2014; 258-268 0304-4238 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304423814003422 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scienta.2014.06.026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613092540940288 |
score |
13.070432 |