The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network

Autores
Pocognoni, Cristián Adrián; Nawara, Tomasz; Bhatt, Jay M.; Lee, Eunjoo; Jian, Xiaoying; Randazzo, Paul; Sztul, Elizabeth
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.
Fil: Pocognoni, Cristián Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentina
Fil: Nawara, Tomasz. University of Alabama at Birmingahm; Estados Unidos
Fil: Bhatt, Jay M.. University of Alabama at Birmingahm; Estados Unidos
Fil: Lee, Eunjoo. University of Alabama at Birmingahm; Estados Unidos
Fil: Jian, Xiaoying. National Institutes of Health; Estados Unidos
Fil: Randazzo, Paul. National Institutes of Health; Estados Unidos
Fil: Sztul, Elizabeth. University of Alabama at Birmingahm; Estados Unidos
Materia
ATP8A1
Arf effector
BIG1/2
Lipid flippase
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265056

id CONICETDig_dfe5f48d9e971876cad6c714b8d368bc
oai_identifier_str oai:ri.conicet.gov.ar:11336/265056
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi NetworkPocognoni, Cristián AdriánNawara, TomaszBhatt, Jay M.Lee, EunjooJian, XiaoyingRandazzo, PaulSztul, ElizabethATP8A1Arf effectorBIG1/2Lipid flippasehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.Fil: Pocognoni, Cristián Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Nawara, Tomasz. University of Alabama at Birmingahm; Estados UnidosFil: Bhatt, Jay M.. University of Alabama at Birmingahm; Estados UnidosFil: Lee, Eunjoo. University of Alabama at Birmingahm; Estados UnidosFil: Jian, Xiaoying. National Institutes of Health; Estados UnidosFil: Randazzo, Paul. National Institutes of Health; Estados UnidosFil: Sztul, Elizabeth. University of Alabama at Birmingahm; Estados UnidosElsevier Science Inc.2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/zipapplication/pdfhttp://hdl.handle.net/11336/265056Pocognoni, Cristián Adrián; Nawara, Tomasz; Bhatt, Jay M.; Lee, Eunjoo; Jian, Xiaoying; et al.; The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network; Elsevier Science Inc.; Archives of Biochemistry and Biophysics; 758; 110049; 8-2024; 1-330003-9861CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S000398612400170Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.abb.2024.110049info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:33:26Zoai:ri.conicet.gov.ar:11336/265056instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:33:27.031CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
title The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
spellingShingle The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
Pocognoni, Cristián Adrián
ATP8A1
Arf effector
BIG1/2
Lipid flippase
title_short The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
title_full The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
title_fullStr The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
title_full_unstemmed The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
title_sort The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network
dc.creator.none.fl_str_mv Pocognoni, Cristián Adrián
Nawara, Tomasz
Bhatt, Jay M.
Lee, Eunjoo
Jian, Xiaoying
Randazzo, Paul
Sztul, Elizabeth
author Pocognoni, Cristián Adrián
author_facet Pocognoni, Cristián Adrián
Nawara, Tomasz
Bhatt, Jay M.
Lee, Eunjoo
Jian, Xiaoying
Randazzo, Paul
Sztul, Elizabeth
author_role author
author2 Nawara, Tomasz
Bhatt, Jay M.
Lee, Eunjoo
Jian, Xiaoying
Randazzo, Paul
Sztul, Elizabeth
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ATP8A1
Arf effector
BIG1/2
Lipid flippase
topic ATP8A1
Arf effector
BIG1/2
Lipid flippase
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.
Fil: Pocognoni, Cristián Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentina
Fil: Nawara, Tomasz. University of Alabama at Birmingahm; Estados Unidos
Fil: Bhatt, Jay M.. University of Alabama at Birmingahm; Estados Unidos
Fil: Lee, Eunjoo. University of Alabama at Birmingahm; Estados Unidos
Fil: Jian, Xiaoying. National Institutes of Health; Estados Unidos
Fil: Randazzo, Paul. National Institutes of Health; Estados Unidos
Fil: Sztul, Elizabeth. University of Alabama at Birmingahm; Estados Unidos
description Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.
publishDate 2024
dc.date.none.fl_str_mv 2024-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265056
Pocognoni, Cristián Adrián; Nawara, Tomasz; Bhatt, Jay M.; Lee, Eunjoo; Jian, Xiaoying; et al.; The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network; Elsevier Science Inc.; Archives of Biochemistry and Biophysics; 758; 110049; 8-2024; 1-33
0003-9861
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265056
identifier_str_mv Pocognoni, Cristián Adrián; Nawara, Tomasz; Bhatt, Jay M.; Lee, Eunjoo; Jian, Xiaoying; et al.; The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network; Elsevier Science Inc.; Archives of Biochemistry and Biophysics; 758; 110049; 8-2024; 1-33
0003-9861
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S000398612400170X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.abb.2024.110049
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/zip
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc.
publisher.none.fl_str_mv Elsevier Science Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083464657371136
score 13.22299