An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
- Autores
- Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters.
Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gatti, Claudio David. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina - Materia
-
Arduino Board
Bluetooth
Energy Harvesting
Finite Element Method
Piezoelectric Material
Rotating Beam
Wireless Sensor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63396
Ver los metadatos del registro completo
id |
CONICETDig_dfd4cb59a2ac91d54ee4e5a7ba51c5f2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63396 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An experimentally validated finite element formulation for modeling 3D rotational energy harvestersRamirez, Jose MiguelGatti, Claudio DavidMachado, Sebastián PabloFebbo, MarianoArduino BoardBluetoothEnergy HarvestingFinite Element MethodPiezoelectric MaterialRotating BeamWireless Sensorhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters.Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gatti, Claudio David. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaElsevier2017-12-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63396Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano; An experimentally validated finite element formulation for modeling 3D rotational energy harvesters; Elsevier; Engineering Structures; 153; 15-12-2017; 136-1450141-0296CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029617315742info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2017.10.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:45Zoai:ri.conicet.gov.ar:11336/63396instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:45.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters |
title |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters |
spellingShingle |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters Ramirez, Jose Miguel Arduino Board Bluetooth Energy Harvesting Finite Element Method Piezoelectric Material Rotating Beam Wireless Sensor |
title_short |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters |
title_full |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters |
title_fullStr |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters |
title_full_unstemmed |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters |
title_sort |
An experimentally validated finite element formulation for modeling 3D rotational energy harvesters |
dc.creator.none.fl_str_mv |
Ramirez, Jose Miguel Gatti, Claudio David Machado, Sebastián Pablo Febbo, Mariano |
author |
Ramirez, Jose Miguel |
author_facet |
Ramirez, Jose Miguel Gatti, Claudio David Machado, Sebastián Pablo Febbo, Mariano |
author_role |
author |
author2 |
Gatti, Claudio David Machado, Sebastián Pablo Febbo, Mariano |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Arduino Board Bluetooth Energy Harvesting Finite Element Method Piezoelectric Material Rotating Beam Wireless Sensor |
topic |
Arduino Board Bluetooth Energy Harvesting Finite Element Method Piezoelectric Material Rotating Beam Wireless Sensor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters. Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gatti, Claudio David. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina |
description |
Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63396 Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano; An experimentally validated finite element formulation for modeling 3D rotational energy harvesters; Elsevier; Engineering Structures; 153; 15-12-2017; 136-145 0141-0296 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63396 |
identifier_str_mv |
Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano; An experimentally validated finite element formulation for modeling 3D rotational energy harvesters; Elsevier; Engineering Structures; 153; 15-12-2017; 136-145 0141-0296 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029617315742 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2017.10.027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613116389752832 |
score |
13.070432 |