An experimentally validated finite element formulation for modeling 3D rotational energy harvesters

Autores
Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters.
Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gatti, Claudio David. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Materia
Arduino Board
Bluetooth
Energy Harvesting
Finite Element Method
Piezoelectric Material
Rotating Beam
Wireless Sensor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63396

id CONICETDig_dfd4cb59a2ac91d54ee4e5a7ba51c5f2
oai_identifier_str oai:ri.conicet.gov.ar:11336/63396
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An experimentally validated finite element formulation for modeling 3D rotational energy harvestersRamirez, Jose MiguelGatti, Claudio DavidMachado, Sebastián PabloFebbo, MarianoArduino BoardBluetoothEnergy HarvestingFinite Element MethodPiezoelectric MaterialRotating BeamWireless Sensorhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters.Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gatti, Claudio David. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaElsevier2017-12-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63396Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano; An experimentally validated finite element formulation for modeling 3D rotational energy harvesters; Elsevier; Engineering Structures; 153; 15-12-2017; 136-1450141-0296CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029617315742info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2017.10.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:45Zoai:ri.conicet.gov.ar:11336/63396instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:45.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
title An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
spellingShingle An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
Ramirez, Jose Miguel
Arduino Board
Bluetooth
Energy Harvesting
Finite Element Method
Piezoelectric Material
Rotating Beam
Wireless Sensor
title_short An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
title_full An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
title_fullStr An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
title_full_unstemmed An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
title_sort An experimentally validated finite element formulation for modeling 3D rotational energy harvesters
dc.creator.none.fl_str_mv Ramirez, Jose Miguel
Gatti, Claudio David
Machado, Sebastián Pablo
Febbo, Mariano
author Ramirez, Jose Miguel
author_facet Ramirez, Jose Miguel
Gatti, Claudio David
Machado, Sebastián Pablo
Febbo, Mariano
author_role author
author2 Gatti, Claudio David
Machado, Sebastián Pablo
Febbo, Mariano
author2_role author
author
author
dc.subject.none.fl_str_mv Arduino Board
Bluetooth
Energy Harvesting
Finite Element Method
Piezoelectric Material
Rotating Beam
Wireless Sensor
topic Arduino Board
Bluetooth
Energy Harvesting
Finite Element Method
Piezoelectric Material
Rotating Beam
Wireless Sensor
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters.
Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gatti, Claudio David. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
description Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the electromechanical equilibrium equations of motion are then derived using D'Alembert principle. In order to validate our finite element formulation, two energy harvesting devices are built and tested, getting insights into the generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior of rotational energy harvesters.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63396
Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano; An experimentally validated finite element formulation for modeling 3D rotational energy harvesters; Elsevier; Engineering Structures; 153; 15-12-2017; 136-145
0141-0296
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63396
identifier_str_mv Ramirez, Jose Miguel; Gatti, Claudio David; Machado, Sebastián Pablo; Febbo, Mariano; An experimentally validated finite element formulation for modeling 3D rotational energy harvesters; Elsevier; Engineering Structures; 153; 15-12-2017; 136-145
0141-0296
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029617315742
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2017.10.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613116389752832
score 13.070432