Improving argumentation-based recommender systems through context-adaptable selection criteria

Autores
Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.
Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Materia
Reasoning Server
Argumentation System
Multiple Preference Criteria
Criterion Selection
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44076

id CONICETDig_dfaa2ffcbd52f098292dd0dc090980e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/44076
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Improving argumentation-based recommender systems through context-adaptable selection criteriaTeze, Juan Carlos LionelGottifredi, SebastiánGarcía, Alejandro JavierSimari, Guillermo RicardoReasoning ServerArgumentation SystemMultiple Preference CriteriaCriterion Selectionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPergamon-Elsevier Science Ltd2015-11-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44076Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo; Improving argumentation-based recommender systems through context-adaptable selection criteria; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 21; 30-11-2015; 8243-82580957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415004509info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.06.048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:31Zoai:ri.conicet.gov.ar:11336/44076instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:31.51CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Improving argumentation-based recommender systems through context-adaptable selection criteria
title Improving argumentation-based recommender systems through context-adaptable selection criteria
spellingShingle Improving argumentation-based recommender systems through context-adaptable selection criteria
Teze, Juan Carlos Lionel
Reasoning Server
Argumentation System
Multiple Preference Criteria
Criterion Selection
title_short Improving argumentation-based recommender systems through context-adaptable selection criteria
title_full Improving argumentation-based recommender systems through context-adaptable selection criteria
title_fullStr Improving argumentation-based recommender systems through context-adaptable selection criteria
title_full_unstemmed Improving argumentation-based recommender systems through context-adaptable selection criteria
title_sort Improving argumentation-based recommender systems through context-adaptable selection criteria
dc.creator.none.fl_str_mv Teze, Juan Carlos Lionel
Gottifredi, Sebastián
García, Alejandro Javier
Simari, Guillermo Ricardo
author Teze, Juan Carlos Lionel
author_facet Teze, Juan Carlos Lionel
Gottifredi, Sebastián
García, Alejandro Javier
Simari, Guillermo Ricardo
author_role author
author2 Gottifredi, Sebastián
García, Alejandro Javier
Simari, Guillermo Ricardo
author2_role author
author
author
dc.subject.none.fl_str_mv Reasoning Server
Argumentation System
Multiple Preference Criteria
Criterion Selection
topic Reasoning Server
Argumentation System
Multiple Preference Criteria
Criterion Selection
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.
Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
description Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44076
Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo; Improving argumentation-based recommender systems through context-adaptable selection criteria; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 21; 30-11-2015; 8243-8258
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44076
identifier_str_mv Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo; Improving argumentation-based recommender systems through context-adaptable selection criteria; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 21; 30-11-2015; 8243-8258
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415004509
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.06.048
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082799204827136
score 13.22299