Improving argumentation-based recommender systems through context-adaptable selection criteria
- Autores
- Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.
Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
Reasoning Server
Argumentation System
Multiple Preference Criteria
Criterion Selection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44076
Ver los metadatos del registro completo
id |
CONICETDig_dfaa2ffcbd52f098292dd0dc090980e1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44076 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improving argumentation-based recommender systems through context-adaptable selection criteriaTeze, Juan Carlos LionelGottifredi, SebastiánGarcía, Alejandro JavierSimari, Guillermo RicardoReasoning ServerArgumentation SystemMultiple Preference CriteriaCriterion Selectionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPergamon-Elsevier Science Ltd2015-11-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44076Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo; Improving argumentation-based recommender systems through context-adaptable selection criteria; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 21; 30-11-2015; 8243-82580957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415004509info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.06.048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:31Zoai:ri.conicet.gov.ar:11336/44076instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:31.51CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improving argumentation-based recommender systems through context-adaptable selection criteria |
title |
Improving argumentation-based recommender systems through context-adaptable selection criteria |
spellingShingle |
Improving argumentation-based recommender systems through context-adaptable selection criteria Teze, Juan Carlos Lionel Reasoning Server Argumentation System Multiple Preference Criteria Criterion Selection |
title_short |
Improving argumentation-based recommender systems through context-adaptable selection criteria |
title_full |
Improving argumentation-based recommender systems through context-adaptable selection criteria |
title_fullStr |
Improving argumentation-based recommender systems through context-adaptable selection criteria |
title_full_unstemmed |
Improving argumentation-based recommender systems through context-adaptable selection criteria |
title_sort |
Improving argumentation-based recommender systems through context-adaptable selection criteria |
dc.creator.none.fl_str_mv |
Teze, Juan Carlos Lionel Gottifredi, Sebastián García, Alejandro Javier Simari, Guillermo Ricardo |
author |
Teze, Juan Carlos Lionel |
author_facet |
Teze, Juan Carlos Lionel Gottifredi, Sebastián García, Alejandro Javier Simari, Guillermo Ricardo |
author_role |
author |
author2 |
Gottifredi, Sebastián García, Alejandro Javier Simari, Guillermo Ricardo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Reasoning Server Argumentation System Multiple Preference Criteria Criterion Selection |
topic |
Reasoning Server Argumentation System Multiple Preference Criteria Criterion Selection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation. Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina |
description |
Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44076 Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo; Improving argumentation-based recommender systems through context-adaptable selection criteria; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 21; 30-11-2015; 8243-8258 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44076 |
identifier_str_mv |
Teze, Juan Carlos Lionel; Gottifredi, Sebastián; García, Alejandro Javier; Simari, Guillermo Ricardo; Improving argumentation-based recommender systems through context-adaptable selection criteria; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 21; 30-11-2015; 8243-8258 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415004509 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.06.048 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082799204827136 |
score |
13.22299 |