Comparing classification approaches for mapping cut-leaved teasel in highway environments

Autores
Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments.
Fil: Wang, Cuizhen. University Of Missouri; Estados Unidos
Fil: Bentivegna, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
Fil: Smeda, Reid J.. University Of Missouri; Estados Unidos
Fil: Swanigan, Randy E.. Missouri Department of Transportation; Estados Unidos
Materia
Hyperspectral
Teasel
Mapping
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16978

id CONICETDig_df7a0b4b00c7040b9bec93be55a8a336
oai_identifier_str oai:ri.conicet.gov.ar:11336/16978
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparing classification approaches for mapping cut-leaved teasel in highway environmentsWang, CuizhenBentivegna, Diego JavierSmeda, Reid J.Swanigan, Randy E.HyperspectralTeaselMappinghttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments.Fil: Wang, Cuizhen. University Of Missouri; Estados UnidosFil: Bentivegna, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; ArgentinaFil: Smeda, Reid J.. University Of Missouri; Estados UnidosFil: Swanigan, Randy E.. Missouri Department of Transportation; Estados UnidosAmer Soc Photogrammetry2010-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16978Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.; Comparing classification approaches for mapping cut-leaved teasel in highway environments; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 76; 9; 1-5-2010; 567-5750099-1112enginfo:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000005/art00003info:eu-repo/semantics/altIdentifier/doi/10.14358/PERS.76.5.567info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:50Zoai:ri.conicet.gov.ar:11336/16978instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:50.301CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparing classification approaches for mapping cut-leaved teasel in highway environments
title Comparing classification approaches for mapping cut-leaved teasel in highway environments
spellingShingle Comparing classification approaches for mapping cut-leaved teasel in highway environments
Wang, Cuizhen
Hyperspectral
Teasel
Mapping
title_short Comparing classification approaches for mapping cut-leaved teasel in highway environments
title_full Comparing classification approaches for mapping cut-leaved teasel in highway environments
title_fullStr Comparing classification approaches for mapping cut-leaved teasel in highway environments
title_full_unstemmed Comparing classification approaches for mapping cut-leaved teasel in highway environments
title_sort Comparing classification approaches for mapping cut-leaved teasel in highway environments
dc.creator.none.fl_str_mv Wang, Cuizhen
Bentivegna, Diego Javier
Smeda, Reid J.
Swanigan, Randy E.
author Wang, Cuizhen
author_facet Wang, Cuizhen
Bentivegna, Diego Javier
Smeda, Reid J.
Swanigan, Randy E.
author_role author
author2 Bentivegna, Diego Javier
Smeda, Reid J.
Swanigan, Randy E.
author2_role author
author
author
dc.subject.none.fl_str_mv Hyperspectral
Teasel
Mapping
topic Hyperspectral
Teasel
Mapping
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments.
Fil: Wang, Cuizhen. University Of Missouri; Estados Unidos
Fil: Bentivegna, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
Fil: Smeda, Reid J.. University Of Missouri; Estados Unidos
Fil: Swanigan, Randy E.. Missouri Department of Transportation; Estados Unidos
description Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments.
publishDate 2010
dc.date.none.fl_str_mv 2010-05-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16978
Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.; Comparing classification approaches for mapping cut-leaved teasel in highway environments; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 76; 9; 1-5-2010; 567-575
0099-1112
url http://hdl.handle.net/11336/16978
identifier_str_mv Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.; Comparing classification approaches for mapping cut-leaved teasel in highway environments; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 76; 9; 1-5-2010; 567-575
0099-1112
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000005/art00003
info:eu-repo/semantics/altIdentifier/doi/10.14358/PERS.76.5.567
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Soc Photogrammetry
publisher.none.fl_str_mv Amer Soc Photogrammetry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269720796987392
score 13.13397