Comparing classification approaches for mapping cut-leaved teasel in highway environments
- Autores
- Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments.
Fil: Wang, Cuizhen. University Of Missouri; Estados Unidos
Fil: Bentivegna, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
Fil: Smeda, Reid J.. University Of Missouri; Estados Unidos
Fil: Swanigan, Randy E.. Missouri Department of Transportation; Estados Unidos - Materia
-
Hyperspectral
Teasel
Mapping - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16978
Ver los metadatos del registro completo
id |
CONICETDig_df7a0b4b00c7040b9bec93be55a8a336 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16978 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparing classification approaches for mapping cut-leaved teasel in highway environmentsWang, CuizhenBentivegna, Diego JavierSmeda, Reid J.Swanigan, Randy E.HyperspectralTeaselMappinghttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments.Fil: Wang, Cuizhen. University Of Missouri; Estados UnidosFil: Bentivegna, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; ArgentinaFil: Smeda, Reid J.. University Of Missouri; Estados UnidosFil: Swanigan, Randy E.. Missouri Department of Transportation; Estados UnidosAmer Soc Photogrammetry2010-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16978Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.; Comparing classification approaches for mapping cut-leaved teasel in highway environments; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 76; 9; 1-5-2010; 567-5750099-1112enginfo:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000005/art00003info:eu-repo/semantics/altIdentifier/doi/10.14358/PERS.76.5.567info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:50Zoai:ri.conicet.gov.ar:11336/16978instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:50.301CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparing classification approaches for mapping cut-leaved teasel in highway environments |
title |
Comparing classification approaches for mapping cut-leaved teasel in highway environments |
spellingShingle |
Comparing classification approaches for mapping cut-leaved teasel in highway environments Wang, Cuizhen Hyperspectral Teasel Mapping |
title_short |
Comparing classification approaches for mapping cut-leaved teasel in highway environments |
title_full |
Comparing classification approaches for mapping cut-leaved teasel in highway environments |
title_fullStr |
Comparing classification approaches for mapping cut-leaved teasel in highway environments |
title_full_unstemmed |
Comparing classification approaches for mapping cut-leaved teasel in highway environments |
title_sort |
Comparing classification approaches for mapping cut-leaved teasel in highway environments |
dc.creator.none.fl_str_mv |
Wang, Cuizhen Bentivegna, Diego Javier Smeda, Reid J. Swanigan, Randy E. |
author |
Wang, Cuizhen |
author_facet |
Wang, Cuizhen Bentivegna, Diego Javier Smeda, Reid J. Swanigan, Randy E. |
author_role |
author |
author2 |
Bentivegna, Diego Javier Smeda, Reid J. Swanigan, Randy E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Hyperspectral Teasel Mapping |
topic |
Hyperspectral Teasel Mapping |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments. Fil: Wang, Cuizhen. University Of Missouri; Estados Unidos Fil: Bentivegna, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina Fil: Smeda, Reid J.. University Of Missouri; Estados Unidos Fil: Swanigan, Randy E.. Missouri Department of Transportation; Estados Unidos |
description |
Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-05-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16978 Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.; Comparing classification approaches for mapping cut-leaved teasel in highway environments; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 76; 9; 1-5-2010; 567-575 0099-1112 |
url |
http://hdl.handle.net/11336/16978 |
identifier_str_mv |
Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.; Comparing classification approaches for mapping cut-leaved teasel in highway environments; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 76; 9; 1-5-2010; 567-575 0099-1112 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000005/art00003 info:eu-repo/semantics/altIdentifier/doi/10.14358/PERS.76.5.567 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Amer Soc Photogrammetry |
publisher.none.fl_str_mv |
Amer Soc Photogrammetry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269720796987392 |
score |
13.13397 |