Scale interactions in magnetohydrodynamic turbulence

Autores
Mininni, Pablo Daniel
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present-day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the development of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, and the development of anisotropies can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and nonlocal transfers are discussed for each case. Whereas the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or nonlocal depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed. © 2011 by Annual Reviews. All rights reserved.
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Isotropy
Magnetohydrodynamics
Modeling
Simulation
Universality
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57207

id CONICETDig_de30162879882b48abde3865d7f61b81
oai_identifier_str oai:ri.conicet.gov.ar:11336/57207
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Scale interactions in magnetohydrodynamic turbulenceMininni, Pablo DanielIsotropyMagnetohydrodynamicsModelingSimulationUniversalityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present-day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the development of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, and the development of anisotropies can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and nonlocal transfers are discussed for each case. Whereas the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or nonlocal depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed. © 2011 by Annual Reviews. All rights reserved.Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAnnual Reviews2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57207Mininni, Pablo Daniel; Scale interactions in magnetohydrodynamic turbulence; Annual Reviews; Annual Review Of Fluid Mechanics; 43; 1-2011; 377-3970066-4189CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-122109-160748info:eu-repo/semantics/altIdentifier/doi/10.1146/annurev-fluid-122109-160748info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:47Zoai:ri.conicet.gov.ar:11336/57207instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:47.714CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Scale interactions in magnetohydrodynamic turbulence
title Scale interactions in magnetohydrodynamic turbulence
spellingShingle Scale interactions in magnetohydrodynamic turbulence
Mininni, Pablo Daniel
Isotropy
Magnetohydrodynamics
Modeling
Simulation
Universality
title_short Scale interactions in magnetohydrodynamic turbulence
title_full Scale interactions in magnetohydrodynamic turbulence
title_fullStr Scale interactions in magnetohydrodynamic turbulence
title_full_unstemmed Scale interactions in magnetohydrodynamic turbulence
title_sort Scale interactions in magnetohydrodynamic turbulence
dc.creator.none.fl_str_mv Mininni, Pablo Daniel
author Mininni, Pablo Daniel
author_facet Mininni, Pablo Daniel
author_role author
dc.subject.none.fl_str_mv Isotropy
Magnetohydrodynamics
Modeling
Simulation
Universality
topic Isotropy
Magnetohydrodynamics
Modeling
Simulation
Universality
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present-day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the development of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, and the development of anisotropies can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and nonlocal transfers are discussed for each case. Whereas the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or nonlocal depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed. © 2011 by Annual Reviews. All rights reserved.
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present-day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the development of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, and the development of anisotropies can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and nonlocal transfers are discussed for each case. Whereas the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or nonlocal depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed. © 2011 by Annual Reviews. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57207
Mininni, Pablo Daniel; Scale interactions in magnetohydrodynamic turbulence; Annual Reviews; Annual Review Of Fluid Mechanics; 43; 1-2011; 377-397
0066-4189
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57207
identifier_str_mv Mininni, Pablo Daniel; Scale interactions in magnetohydrodynamic turbulence; Annual Reviews; Annual Review Of Fluid Mechanics; 43; 1-2011; 377-397
0066-4189
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-122109-160748
info:eu-repo/semantics/altIdentifier/doi/10.1146/annurev-fluid-122109-160748
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Annual Reviews
publisher.none.fl_str_mv Annual Reviews
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613941841362944
score 13.070432