The Elephant Curve of Global Inequality and Growth
- Autores
- Gonzalez Alvaredo, Facundo; Chancel, Lucas; Piketty, Thomas; Saez, Emmanuel; Zucman, Gabriel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamics of global inequality have attracted growing attention in recent years (Piketty 2014). However, we still know relatively little about how the distribution of global income is evolving. Income inequality is increasing in many countries, but large emerging countries like India and China are catching up and might drive global inequality down. Recent studies of global inequality combine household surveys and provide valuable estimates (Lakner and Milanovic 2016; Liberati 2015; Ortiz and Cummins 2011). Surveys, however, are not uniform across countries, they cannot capture top incomes well, and are not consistent with macroeconomic totals. In this paper, we report on new estimates of global inequality presented in the World Inequality Report 2018 (Alvaredo et al. 2018). These estimates are based on recent, homogeneous inequality statistics produced for a number of countries in the World Inequality Database (WID.world). We find that the global top 1 percent has captured twice as much total growth than the global bottom 50 percent between 1980 and 2016. We also analyze different projected trajectories for global inequality in the coming decades.
Fil: Gonzalez Alvaredo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Ecole D'economie de Paris; Francia
Fil: Chancel, Lucas. Ecole D'economie de Paris; Francia
Fil: Piketty, Thomas. Ecole D'economie de Paris; Francia
Fil: Saez, Emmanuel. University of California at Berkeley; Estados Unidos
Fil: Zucman, Gabriel. University of California at Berkeley; Estados Unidos - Materia
-
INCOME
WEALTH
INEQUALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87388
Ver los metadatos del registro completo
id |
CONICETDig_dddc789ba8bb4273fd767bae160ed569 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87388 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Elephant Curve of Global Inequality and GrowthGonzalez Alvaredo, FacundoChancel, LucasPiketty, ThomasSaez, EmmanuelZucman, GabrielINCOMEWEALTHINEQUALITYhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5The dynamics of global inequality have attracted growing attention in recent years (Piketty 2014). However, we still know relatively little about how the distribution of global income is evolving. Income inequality is increasing in many countries, but large emerging countries like India and China are catching up and might drive global inequality down. Recent studies of global inequality combine household surveys and provide valuable estimates (Lakner and Milanovic 2016; Liberati 2015; Ortiz and Cummins 2011). Surveys, however, are not uniform across countries, they cannot capture top incomes well, and are not consistent with macroeconomic totals. In this paper, we report on new estimates of global inequality presented in the World Inequality Report 2018 (Alvaredo et al. 2018). These estimates are based on recent, homogeneous inequality statistics produced for a number of countries in the World Inequality Database (WID.world). We find that the global top 1 percent has captured twice as much total growth than the global bottom 50 percent between 1980 and 2016. We also analyze different projected trajectories for global inequality in the coming decades.Fil: Gonzalez Alvaredo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Ecole D'economie de Paris; FranciaFil: Chancel, Lucas. Ecole D'economie de Paris; FranciaFil: Piketty, Thomas. Ecole D'economie de Paris; FranciaFil: Saez, Emmanuel. University of California at Berkeley; Estados UnidosFil: Zucman, Gabriel. University of California at Berkeley; Estados UnidosAmerican Economic Association2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87388Gonzalez Alvaredo, Facundo; Chancel, Lucas; Piketty, Thomas; Saez, Emmanuel; Zucman, Gabriel; The Elephant Curve of Global Inequality and Growth; American Economic Association; AEA Papers and Proceedings; 108; 6-2018; 103-1082574-0768CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aeaweb.org/doi/10.1257/pandp.20181073info:eu-repo/semantics/altIdentifier/doi/10.1257/pandp.20181073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:36Zoai:ri.conicet.gov.ar:11336/87388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:36.719CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Elephant Curve of Global Inequality and Growth |
title |
The Elephant Curve of Global Inequality and Growth |
spellingShingle |
The Elephant Curve of Global Inequality and Growth Gonzalez Alvaredo, Facundo INCOME WEALTH INEQUALITY |
title_short |
The Elephant Curve of Global Inequality and Growth |
title_full |
The Elephant Curve of Global Inequality and Growth |
title_fullStr |
The Elephant Curve of Global Inequality and Growth |
title_full_unstemmed |
The Elephant Curve of Global Inequality and Growth |
title_sort |
The Elephant Curve of Global Inequality and Growth |
dc.creator.none.fl_str_mv |
Gonzalez Alvaredo, Facundo Chancel, Lucas Piketty, Thomas Saez, Emmanuel Zucman, Gabriel |
author |
Gonzalez Alvaredo, Facundo |
author_facet |
Gonzalez Alvaredo, Facundo Chancel, Lucas Piketty, Thomas Saez, Emmanuel Zucman, Gabriel |
author_role |
author |
author2 |
Chancel, Lucas Piketty, Thomas Saez, Emmanuel Zucman, Gabriel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
INCOME WEALTH INEQUALITY |
topic |
INCOME WEALTH INEQUALITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
The dynamics of global inequality have attracted growing attention in recent years (Piketty 2014). However, we still know relatively little about how the distribution of global income is evolving. Income inequality is increasing in many countries, but large emerging countries like India and China are catching up and might drive global inequality down. Recent studies of global inequality combine household surveys and provide valuable estimates (Lakner and Milanovic 2016; Liberati 2015; Ortiz and Cummins 2011). Surveys, however, are not uniform across countries, they cannot capture top incomes well, and are not consistent with macroeconomic totals. In this paper, we report on new estimates of global inequality presented in the World Inequality Report 2018 (Alvaredo et al. 2018). These estimates are based on recent, homogeneous inequality statistics produced for a number of countries in the World Inequality Database (WID.world). We find that the global top 1 percent has captured twice as much total growth than the global bottom 50 percent between 1980 and 2016. We also analyze different projected trajectories for global inequality in the coming decades. Fil: Gonzalez Alvaredo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Ecole D'economie de Paris; Francia Fil: Chancel, Lucas. Ecole D'economie de Paris; Francia Fil: Piketty, Thomas. Ecole D'economie de Paris; Francia Fil: Saez, Emmanuel. University of California at Berkeley; Estados Unidos Fil: Zucman, Gabriel. University of California at Berkeley; Estados Unidos |
description |
The dynamics of global inequality have attracted growing attention in recent years (Piketty 2014). However, we still know relatively little about how the distribution of global income is evolving. Income inequality is increasing in many countries, but large emerging countries like India and China are catching up and might drive global inequality down. Recent studies of global inequality combine household surveys and provide valuable estimates (Lakner and Milanovic 2016; Liberati 2015; Ortiz and Cummins 2011). Surveys, however, are not uniform across countries, they cannot capture top incomes well, and are not consistent with macroeconomic totals. In this paper, we report on new estimates of global inequality presented in the World Inequality Report 2018 (Alvaredo et al. 2018). These estimates are based on recent, homogeneous inequality statistics produced for a number of countries in the World Inequality Database (WID.world). We find that the global top 1 percent has captured twice as much total growth than the global bottom 50 percent between 1980 and 2016. We also analyze different projected trajectories for global inequality in the coming decades. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87388 Gonzalez Alvaredo, Facundo; Chancel, Lucas; Piketty, Thomas; Saez, Emmanuel; Zucman, Gabriel; The Elephant Curve of Global Inequality and Growth; American Economic Association; AEA Papers and Proceedings; 108; 6-2018; 103-108 2574-0768 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87388 |
identifier_str_mv |
Gonzalez Alvaredo, Facundo; Chancel, Lucas; Piketty, Thomas; Saez, Emmanuel; Zucman, Gabriel; The Elephant Curve of Global Inequality and Growth; American Economic Association; AEA Papers and Proceedings; 108; 6-2018; 103-108 2574-0768 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aeaweb.org/doi/10.1257/pandp.20181073 info:eu-repo/semantics/altIdentifier/doi/10.1257/pandp.20181073 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Economic Association |
publisher.none.fl_str_mv |
American Economic Association |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269965933084672 |
score |
13.13397 |