Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State

Autores
Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; Klein, Eduardo; Choi, Francis; Parmalee, Lark; Helmuth, Brian; Montes, Enrique
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally.
Fil: Bravo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Moity, Nicolas. Charles Darwin Foundation Santa Cruz; Ecuador
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia
Fil: Muller-Karger, Frank. University of South Florida St. Petersburg; Estados Unidos
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Espíritu Santo; Ecuador
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela
Fil: Choi, Francis. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Parmalee, Lark. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Helmuth, Brian. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Montes, Enrique. University of South Florida St. Petersburg; Estados Unidos
Materia
AMERICAS
BIODIVERSITY MONITORING
MACHINE LEARNING
MARINE BIODIVERSITY
ESSENTIAL OCEAN VARIABLES (EOVS)
PHOTOQUADRATS
ROCKY INTERTIDAL ZONE
CORALNET
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170269

id CONICETDig_ddcb51af9e2aec39de7c2651ff5f6879
oai_identifier_str oai:ri.conicet.gov.ar:11336/170269
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat StateBravo, GonzaloMoity, NicolasLondoño-Cruz, EdgardoMuller-Karger, FrankBigatti, GregorioKlein, EduardoChoi, FrancisParmalee, LarkHelmuth, BrianMontes, EnriqueAMERICASBIODIVERSITY MONITORINGMACHINE LEARNINGMARINE BIODIVERSITYESSENTIAL OCEAN VARIABLES (EOVS)PHOTOQUADRATSROCKY INTERTIDAL ZONECORALNEThttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally.Fil: Bravo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Moity, Nicolas. Charles Darwin Foundation Santa Cruz; EcuadorFil: Londoño-Cruz, Edgardo. Universidad del Valle; ColombiaFil: Muller-Karger, Frank. University of South Florida St. Petersburg; Estados UnidosFil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Espíritu Santo; EcuadorFil: Klein, Eduardo. Universidad Simón Bolívar; VenezuelaFil: Choi, Francis. Northeastern University; Estados Unidos. University Northeastern; Estados UnidosFil: Parmalee, Lark. Northeastern University; Estados Unidos. University Northeastern; Estados UnidosFil: Helmuth, Brian. Northeastern University; Estados Unidos. University Northeastern; Estados UnidosFil: Montes, Enrique. University of South Florida St. Petersburg; Estados UnidosFrontiers Media2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170269Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; et al.; Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State; Frontiers Media; Frontiers In Marine Science; 8; 691313; 9-2021; 1-122296-7745CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fmars.2021.691313info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmars.2021.691313/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:03Zoai:ri.conicet.gov.ar:11336/170269instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:03.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
title Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
spellingShingle Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
Bravo, Gonzalo
AMERICAS
BIODIVERSITY MONITORING
MACHINE LEARNING
MARINE BIODIVERSITY
ESSENTIAL OCEAN VARIABLES (EOVS)
PHOTOQUADRATS
ROCKY INTERTIDAL ZONE
CORALNET
title_short Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
title_full Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
title_fullStr Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
title_full_unstemmed Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
title_sort Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
dc.creator.none.fl_str_mv Bravo, Gonzalo
Moity, Nicolas
Londoño-Cruz, Edgardo
Muller-Karger, Frank
Bigatti, Gregorio
Klein, Eduardo
Choi, Francis
Parmalee, Lark
Helmuth, Brian
Montes, Enrique
author Bravo, Gonzalo
author_facet Bravo, Gonzalo
Moity, Nicolas
Londoño-Cruz, Edgardo
Muller-Karger, Frank
Bigatti, Gregorio
Klein, Eduardo
Choi, Francis
Parmalee, Lark
Helmuth, Brian
Montes, Enrique
author_role author
author2 Moity, Nicolas
Londoño-Cruz, Edgardo
Muller-Karger, Frank
Bigatti, Gregorio
Klein, Eduardo
Choi, Francis
Parmalee, Lark
Helmuth, Brian
Montes, Enrique
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AMERICAS
BIODIVERSITY MONITORING
MACHINE LEARNING
MARINE BIODIVERSITY
ESSENTIAL OCEAN VARIABLES (EOVS)
PHOTOQUADRATS
ROCKY INTERTIDAL ZONE
CORALNET
topic AMERICAS
BIODIVERSITY MONITORING
MACHINE LEARNING
MARINE BIODIVERSITY
ESSENTIAL OCEAN VARIABLES (EOVS)
PHOTOQUADRATS
ROCKY INTERTIDAL ZONE
CORALNET
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally.
Fil: Bravo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Moity, Nicolas. Charles Darwin Foundation Santa Cruz; Ecuador
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia
Fil: Muller-Karger, Frank. University of South Florida St. Petersburg; Estados Unidos
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Espíritu Santo; Ecuador
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela
Fil: Choi, Francis. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Parmalee, Lark. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Helmuth, Brian. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Montes, Enrique. University of South Florida St. Petersburg; Estados Unidos
description Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170269
Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; et al.; Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State; Frontiers Media; Frontiers In Marine Science; 8; 691313; 9-2021; 1-12
2296-7745
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170269
identifier_str_mv Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; et al.; Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State; Frontiers Media; Frontiers In Marine Science; 8; 691313; 9-2021; 1-12
2296-7745
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3389/fmars.2021.691313
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmars.2021.691313/full
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082920537653248
score 13.22299