Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
- Autores
- Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; Klein, Eduardo; Choi, Francis; Parmalee, Lark; Helmuth, Brian; Montes, Enrique
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally.
Fil: Bravo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Moity, Nicolas. Charles Darwin Foundation Santa Cruz; Ecuador
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia
Fil: Muller-Karger, Frank. University of South Florida St. Petersburg; Estados Unidos
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Espíritu Santo; Ecuador
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela
Fil: Choi, Francis. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Parmalee, Lark. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Helmuth, Brian. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
Fil: Montes, Enrique. University of South Florida St. Petersburg; Estados Unidos - Materia
-
AMERICAS
BIODIVERSITY MONITORING
MACHINE LEARNING
MARINE BIODIVERSITY
ESSENTIAL OCEAN VARIABLES (EOVS)
PHOTOQUADRATS
ROCKY INTERTIDAL ZONE
CORALNET - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/170269
Ver los metadatos del registro completo
id |
CONICETDig_ddcb51af9e2aec39de7c2651ff5f6879 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/170269 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat StateBravo, GonzaloMoity, NicolasLondoño-Cruz, EdgardoMuller-Karger, FrankBigatti, GregorioKlein, EduardoChoi, FrancisParmalee, LarkHelmuth, BrianMontes, EnriqueAMERICASBIODIVERSITY MONITORINGMACHINE LEARNINGMARINE BIODIVERSITYESSENTIAL OCEAN VARIABLES (EOVS)PHOTOQUADRATSROCKY INTERTIDAL ZONECORALNEThttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally.Fil: Bravo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Moity, Nicolas. Charles Darwin Foundation Santa Cruz; EcuadorFil: Londoño-Cruz, Edgardo. Universidad del Valle; ColombiaFil: Muller-Karger, Frank. University of South Florida St. Petersburg; Estados UnidosFil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Espíritu Santo; EcuadorFil: Klein, Eduardo. Universidad Simón Bolívar; VenezuelaFil: Choi, Francis. Northeastern University; Estados Unidos. University Northeastern; Estados UnidosFil: Parmalee, Lark. Northeastern University; Estados Unidos. University Northeastern; Estados UnidosFil: Helmuth, Brian. Northeastern University; Estados Unidos. University Northeastern; Estados UnidosFil: Montes, Enrique. University of South Florida St. Petersburg; Estados UnidosFrontiers Media2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170269Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; et al.; Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State; Frontiers Media; Frontiers In Marine Science; 8; 691313; 9-2021; 1-122296-7745CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fmars.2021.691313info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmars.2021.691313/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:03Zoai:ri.conicet.gov.ar:11336/170269instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:03.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State |
title |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State |
spellingShingle |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State Bravo, Gonzalo AMERICAS BIODIVERSITY MONITORING MACHINE LEARNING MARINE BIODIVERSITY ESSENTIAL OCEAN VARIABLES (EOVS) PHOTOQUADRATS ROCKY INTERTIDAL ZONE CORALNET |
title_short |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State |
title_full |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State |
title_fullStr |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State |
title_full_unstemmed |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State |
title_sort |
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State |
dc.creator.none.fl_str_mv |
Bravo, Gonzalo Moity, Nicolas Londoño-Cruz, Edgardo Muller-Karger, Frank Bigatti, Gregorio Klein, Eduardo Choi, Francis Parmalee, Lark Helmuth, Brian Montes, Enrique |
author |
Bravo, Gonzalo |
author_facet |
Bravo, Gonzalo Moity, Nicolas Londoño-Cruz, Edgardo Muller-Karger, Frank Bigatti, Gregorio Klein, Eduardo Choi, Francis Parmalee, Lark Helmuth, Brian Montes, Enrique |
author_role |
author |
author2 |
Moity, Nicolas Londoño-Cruz, Edgardo Muller-Karger, Frank Bigatti, Gregorio Klein, Eduardo Choi, Francis Parmalee, Lark Helmuth, Brian Montes, Enrique |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
AMERICAS BIODIVERSITY MONITORING MACHINE LEARNING MARINE BIODIVERSITY ESSENTIAL OCEAN VARIABLES (EOVS) PHOTOQUADRATS ROCKY INTERTIDAL ZONE CORALNET |
topic |
AMERICAS BIODIVERSITY MONITORING MACHINE LEARNING MARINE BIODIVERSITY ESSENTIAL OCEAN VARIABLES (EOVS) PHOTOQUADRATS ROCKY INTERTIDAL ZONE CORALNET |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally. Fil: Bravo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina Fil: Moity, Nicolas. Charles Darwin Foundation Santa Cruz; Ecuador Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia Fil: Muller-Karger, Frank. University of South Florida St. Petersburg; Estados Unidos Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Espíritu Santo; Ecuador Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela Fil: Choi, Francis. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos Fil: Parmalee, Lark. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos Fil: Helmuth, Brian. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos Fil: Montes, Enrique. University of South Florida St. Petersburg; Estados Unidos |
description |
Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/170269 Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; et al.; Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State; Frontiers Media; Frontiers In Marine Science; 8; 691313; 9-2021; 1-12 2296-7745 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/170269 |
identifier_str_mv |
Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; et al.; Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State; Frontiers Media; Frontiers In Marine Science; 8; 691313; 9-2021; 1-12 2296-7745 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fmars.2021.691313 info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmars.2021.691313/full |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082920537653248 |
score |
13.22299 |