A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube

Autores
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Golup, Geraldina Tamara; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; The IceCube Collaboration
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies > 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index −2.50 ± 0.09 and a flux at 100 TeV of ({6.7}_{-1.2}^{+1.1})\times {10}^{-18}\;{\mathrm{GeV}}^{-1}\;{{\rm{s}}}^{-1}\;{\mathrm{sr}}^{-1}\;{\mathrm{cm}}^{-2}. Under the same assumptions, an unbroken power law with index −2 is disfavored with a significance of 3.8σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1σ (p = 1.7%) if instead we compare the best fit to a spectrum with index −2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a νe fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6σ (p = 0.014%).
Fil: Aartsen, M. G.. University of Adelaide; Australia
Fil: Abraham, K.. Technische Universitat Munchen; Alemania
Fil: Ackermann, M.. Deutsches Elektronen Synchrotron; Alemania
Fil: Adams, J.. University Of Canterbury; Nueva Zelanda
Fil: Aguilar, J. A.. Université Libre de Bruxelles; Bélgica
Fil: Golup, Geraldina Tamara. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Wallraff, M.. Rwth Aachen University; Alemania
Fil: Wandkowsky, N.. University of Wisconsin; Estados Unidos
Fil: Weaver, Ch.. University of Wisconsin; Estados Unidos
Fil: Wendt, C.. University of Wisconsin; Estados Unidos
Fil: Westerhoff, S.. University of Wisconsin; Estados Unidos
Fil: Whelan, B. J.. University of Adelaide; Australia
Fil: Whitehorn, N.. University of Wisconsin; Estados Unidos
Fil: Wichary, C.. Rwth Aachen University; Alemania
Fil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; Alemania
Fil: Wiebusch, C. H.. Rwth Aachen University; Alemania
Fil: Wille, L.. University of Wisconsin; Estados Unidos
Fil: Williams, D. R.. University of Alabama at Birmingahm; Estados Unidos
Fil: Wissing, H.. University of Maryland; Estados Unidos
Fil: Wolf, M.. Stockholms Universitet; Suecia
Fil: Wood, T. R.. Universidad de Ginebra; Suiza
Fil: Woschnagg, K.. University of California; Estados Unidos
Fil: Xu, D. L.. University of Alabama at Birmingahm; Estados Unidos
Fil: Xu, X. W.. Chiba University; Japón
Fil: Xu, Y.. Stony Brook University; Estados Unidos
Fil: Yanez, J. P.. Deutsches Elektronen Synchrotron; Alemania
Fil: Yodh, G.. South Dakota School of Mines and Technology; Estados Unidos
Fil: Yoshida, S.. Chiba University; Japón
Fil: Zarzhitsky, P.. University of Alabama at Birmingahm; Estados Unidos
Fil: Zoll, M.. Stockholms Universitet; Suecia
Fil: The IceCube Collaboration. No especifica;
Materia
Neutrinos
Astroparticle Physics
Methods: Data Analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/62855

id CONICETDig_dd90884e060dcf4b002d5e5228a39526
oai_identifier_str oai:ri.conicet.gov.ar:11336/62855
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCubeAartsen, M. G.Abraham, K.Ackermann, M.Adams, J.Aguilar, J. A.Golup, Geraldina TamaraWallraff, M.Wandkowsky, N.Weaver, Ch.Wendt, C.Westerhoff, S.Whelan, B. J.Whitehorn, N.Wichary, C.Wiebe, K.Wiebusch, C. H.Wille, L.Williams, D. R.Wissing, H.Wolf, M.Wood, T. R.Woschnagg, K.Xu, D. L.Xu, X. W.Xu, Y.Yanez, J. P.Yodh, G.Yoshida, S.Zarzhitsky, P.Zoll, M.The IceCube CollaborationNeutrinosAstroparticle PhysicsMethods: Data Analysishttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies > 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index −2.50 ± 0.09 and a flux at 100 TeV of ({6.7}_{-1.2}^{+1.1})\times {10}^{-18}\;{\mathrm{GeV}}^{-1}\;{{\rm{s}}}^{-1}\;{\mathrm{sr}}^{-1}\;{\mathrm{cm}}^{-2}. Under the same assumptions, an unbroken power law with index −2 is disfavored with a significance of 3.8σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1σ (p = 1.7%) if instead we compare the best fit to a spectrum with index −2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a νe fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6σ (p = 0.014%).Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische Universitat Munchen; AlemaniaFil: Ackermann, M.. Deutsches Elektronen Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. Université Libre de Bruxelles; BélgicaFil: Golup, Geraldina Tamara. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Wisconsin; Estados UnidosFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of Wisconsin; Estados UnidosFil: Wichary, C.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. Universidad de Ginebra; SuizaFil: Woschnagg, K.. University of California; Estados UnidosFil: Xu, D. L.. University of Alabama at Birmingahm; Estados UnidosFil: Xu, X. W.. Chiba University; JapónFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen Synchrotron; AlemaniaFil: Yodh, G.. South Dakota School of Mines and Technology; Estados UnidosFil: Yoshida, S.. Chiba University; JapónFil: Zarzhitsky, P.. University of Alabama at Birmingahm; Estados UnidosFil: Zoll, M.. Stockholms Universitet; SueciaFil: The IceCube Collaboration. No especifica;IOP Publishing2015-08-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62855Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; et al.; A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube; IOP Publishing; Astrophysical Journal; 809; 1; 13-8-2015; 1-160004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/809/1/98info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/809/1/98info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1507.03991info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:59Zoai:ri.conicet.gov.ar:11336/62855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:59.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
title A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
spellingShingle A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
Aartsen, M. G.
Neutrinos
Astroparticle Physics
Methods: Data Analysis
title_short A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
title_full A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
title_fullStr A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
title_full_unstemmed A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
title_sort A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
dc.creator.none.fl_str_mv Aartsen, M. G.
Abraham, K.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Golup, Geraldina Tamara
Wallraff, M.
Wandkowsky, N.
Weaver, Ch.
Wendt, C.
Westerhoff, S.
Whelan, B. J.
Whitehorn, N.
Wichary, C.
Wiebe, K.
Wiebusch, C. H.
Wille, L.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, D. L.
Xu, X. W.
Xu, Y.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Zoll, M.
The IceCube Collaboration
author Aartsen, M. G.
author_facet Aartsen, M. G.
Abraham, K.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Golup, Geraldina Tamara
Wallraff, M.
Wandkowsky, N.
Weaver, Ch.
Wendt, C.
Westerhoff, S.
Whelan, B. J.
Whitehorn, N.
Wichary, C.
Wiebe, K.
Wiebusch, C. H.
Wille, L.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, D. L.
Xu, X. W.
Xu, Y.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Zoll, M.
The IceCube Collaboration
author_role author
author2 Abraham, K.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Golup, Geraldina Tamara
Wallraff, M.
Wandkowsky, N.
Weaver, Ch.
Wendt, C.
Westerhoff, S.
Whelan, B. J.
Whitehorn, N.
Wichary, C.
Wiebe, K.
Wiebusch, C. H.
Wille, L.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, D. L.
Xu, X. W.
Xu, Y.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Zoll, M.
The IceCube Collaboration
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Neutrinos
Astroparticle Physics
Methods: Data Analysis
topic Neutrinos
Astroparticle Physics
Methods: Data Analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies > 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index −2.50 ± 0.09 and a flux at 100 TeV of ({6.7}_{-1.2}^{+1.1})\times {10}^{-18}\;{\mathrm{GeV}}^{-1}\;{{\rm{s}}}^{-1}\;{\mathrm{sr}}^{-1}\;{\mathrm{cm}}^{-2}. Under the same assumptions, an unbroken power law with index −2 is disfavored with a significance of 3.8σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1σ (p = 1.7%) if instead we compare the best fit to a spectrum with index −2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a νe fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6σ (p = 0.014%).
Fil: Aartsen, M. G.. University of Adelaide; Australia
Fil: Abraham, K.. Technische Universitat Munchen; Alemania
Fil: Ackermann, M.. Deutsches Elektronen Synchrotron; Alemania
Fil: Adams, J.. University Of Canterbury; Nueva Zelanda
Fil: Aguilar, J. A.. Université Libre de Bruxelles; Bélgica
Fil: Golup, Geraldina Tamara. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Wallraff, M.. Rwth Aachen University; Alemania
Fil: Wandkowsky, N.. University of Wisconsin; Estados Unidos
Fil: Weaver, Ch.. University of Wisconsin; Estados Unidos
Fil: Wendt, C.. University of Wisconsin; Estados Unidos
Fil: Westerhoff, S.. University of Wisconsin; Estados Unidos
Fil: Whelan, B. J.. University of Adelaide; Australia
Fil: Whitehorn, N.. University of Wisconsin; Estados Unidos
Fil: Wichary, C.. Rwth Aachen University; Alemania
Fil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; Alemania
Fil: Wiebusch, C. H.. Rwth Aachen University; Alemania
Fil: Wille, L.. University of Wisconsin; Estados Unidos
Fil: Williams, D. R.. University of Alabama at Birmingahm; Estados Unidos
Fil: Wissing, H.. University of Maryland; Estados Unidos
Fil: Wolf, M.. Stockholms Universitet; Suecia
Fil: Wood, T. R.. Universidad de Ginebra; Suiza
Fil: Woschnagg, K.. University of California; Estados Unidos
Fil: Xu, D. L.. University of Alabama at Birmingahm; Estados Unidos
Fil: Xu, X. W.. Chiba University; Japón
Fil: Xu, Y.. Stony Brook University; Estados Unidos
Fil: Yanez, J. P.. Deutsches Elektronen Synchrotron; Alemania
Fil: Yodh, G.. South Dakota School of Mines and Technology; Estados Unidos
Fil: Yoshida, S.. Chiba University; Japón
Fil: Zarzhitsky, P.. University of Alabama at Birmingahm; Estados Unidos
Fil: Zoll, M.. Stockholms Universitet; Suecia
Fil: The IceCube Collaboration. No especifica;
description Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies > 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index −2.50 ± 0.09 and a flux at 100 TeV of ({6.7}_{-1.2}^{+1.1})\times {10}^{-18}\;{\mathrm{GeV}}^{-1}\;{{\rm{s}}}^{-1}\;{\mathrm{sr}}^{-1}\;{\mathrm{cm}}^{-2}. Under the same assumptions, an unbroken power law with index −2 is disfavored with a significance of 3.8σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1σ (p = 1.7%) if instead we compare the best fit to a spectrum with index −2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a νe fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6σ (p = 0.014%).
publishDate 2015
dc.date.none.fl_str_mv 2015-08-13
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/62855
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; et al.; A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube; IOP Publishing; Astrophysical Journal; 809; 1; 13-8-2015; 1-16
0004-637X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/62855
identifier_str_mv Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; et al.; A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube; IOP Publishing; Astrophysical Journal; 809; 1; 13-8-2015; 1-16
0004-637X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/809/1/98
info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/809/1/98
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1507.03991
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614332477865984
score 13.070432