Comparison of direct and indirect soil organic carbon prediction at farm field scale

Autores
Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; Cardenas, L. M.; Irisarri, Jorge Gonzalo Nicolás
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.
Fil: Segura, C.. No especifíca;
Fil: Neal, A. L.. No especifíca;
Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Harris, P.. No especifíca;
Fil: Rivero, M. J.. No especifíca;
Fil: Cardenas, L. M.. No especifíca;
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Materia
COS
ESPI
Ecosystem services provision index
Open data
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/263700

id CONICETDig_dc5ba2eebcc90387af0ca7820aab72b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/263700
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparison of direct and indirect soil organic carbon prediction at farm field scaleSegura, C.Neal, A. L.Castro Sardiña, Leticia SabrinaHarris, P.Rivero, M. J.Cardenas, L. M.Irisarri, Jorge Gonzalo NicolásCOSESPIEcosystem services provision indexOpen datahttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.Fil: Segura, C.. No especifíca;Fil: Neal, A. L.. No especifíca;Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Harris, P.. No especifíca;Fil: Rivero, M. J.. No especifíca;Fil: Cardenas, L. M.. No especifíca;Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaAcademic Press Ltd - Elsevier Science Ltd2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263700Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-120301-4797CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0301479724015597info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2024.121573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:45:10Zoai:ri.conicet.gov.ar:11336/263700instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:45:10.512CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparison of direct and indirect soil organic carbon prediction at farm field scale
title Comparison of direct and indirect soil organic carbon prediction at farm field scale
spellingShingle Comparison of direct and indirect soil organic carbon prediction at farm field scale
Segura, C.
COS
ESPI
Ecosystem services provision index
Open data
title_short Comparison of direct and indirect soil organic carbon prediction at farm field scale
title_full Comparison of direct and indirect soil organic carbon prediction at farm field scale
title_fullStr Comparison of direct and indirect soil organic carbon prediction at farm field scale
title_full_unstemmed Comparison of direct and indirect soil organic carbon prediction at farm field scale
title_sort Comparison of direct and indirect soil organic carbon prediction at farm field scale
dc.creator.none.fl_str_mv Segura, C.
Neal, A. L.
Castro Sardiña, Leticia Sabrina
Harris, P.
Rivero, M. J.
Cardenas, L. M.
Irisarri, Jorge Gonzalo Nicolás
author Segura, C.
author_facet Segura, C.
Neal, A. L.
Castro Sardiña, Leticia Sabrina
Harris, P.
Rivero, M. J.
Cardenas, L. M.
Irisarri, Jorge Gonzalo Nicolás
author_role author
author2 Neal, A. L.
Castro Sardiña, Leticia Sabrina
Harris, P.
Rivero, M. J.
Cardenas, L. M.
Irisarri, Jorge Gonzalo Nicolás
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv COS
ESPI
Ecosystem services provision index
Open data
topic COS
ESPI
Ecosystem services provision index
Open data
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.
Fil: Segura, C.. No especifíca;
Fil: Neal, A. L.. No especifíca;
Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Harris, P.. No especifíca;
Fil: Rivero, M. J.. No especifíca;
Fil: Cardenas, L. M.. No especifíca;
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
description To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.
publishDate 2024
dc.date.none.fl_str_mv 2024-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/263700
Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-12
0301-4797
CONICET Digital
CONICET
url http://hdl.handle.net/11336/263700
identifier_str_mv Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-12
0301-4797
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0301479724015597
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2024.121573
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Ltd - Elsevier Science Ltd
publisher.none.fl_str_mv Academic Press Ltd - Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849872440939773952
score 13.011256