Comparison of direct and indirect soil organic carbon prediction at farm field scale
- Autores
- Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; Cardenas, L. M.; Irisarri, Jorge Gonzalo Nicolás
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.
Fil: Segura, C.. No especifíca;
Fil: Neal, A. L.. No especifíca;
Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Harris, P.. No especifíca;
Fil: Rivero, M. J.. No especifíca;
Fil: Cardenas, L. M.. No especifíca;
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina - Materia
-
COS
ESPI
Ecosystem services provision index
Open data - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263700
Ver los metadatos del registro completo
| id |
CONICETDig_dc5ba2eebcc90387af0ca7820aab72b2 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263700 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Comparison of direct and indirect soil organic carbon prediction at farm field scaleSegura, C.Neal, A. L.Castro Sardiña, Leticia SabrinaHarris, P.Rivero, M. J.Cardenas, L. M.Irisarri, Jorge Gonzalo NicolásCOSESPIEcosystem services provision indexOpen datahttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.Fil: Segura, C.. No especifíca;Fil: Neal, A. L.. No especifíca;Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Harris, P.. No especifíca;Fil: Rivero, M. J.. No especifíca;Fil: Cardenas, L. M.. No especifíca;Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaAcademic Press Ltd - Elsevier Science Ltd2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263700Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-120301-4797CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0301479724015597info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2024.121573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:45:10Zoai:ri.conicet.gov.ar:11336/263700instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:45:10.512CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Comparison of direct and indirect soil organic carbon prediction at farm field scale |
| title |
Comparison of direct and indirect soil organic carbon prediction at farm field scale |
| spellingShingle |
Comparison of direct and indirect soil organic carbon prediction at farm field scale Segura, C. COS ESPI Ecosystem services provision index Open data |
| title_short |
Comparison of direct and indirect soil organic carbon prediction at farm field scale |
| title_full |
Comparison of direct and indirect soil organic carbon prediction at farm field scale |
| title_fullStr |
Comparison of direct and indirect soil organic carbon prediction at farm field scale |
| title_full_unstemmed |
Comparison of direct and indirect soil organic carbon prediction at farm field scale |
| title_sort |
Comparison of direct and indirect soil organic carbon prediction at farm field scale |
| dc.creator.none.fl_str_mv |
Segura, C. Neal, A. L. Castro Sardiña, Leticia Sabrina Harris, P. Rivero, M. J. Cardenas, L. M. Irisarri, Jorge Gonzalo Nicolás |
| author |
Segura, C. |
| author_facet |
Segura, C. Neal, A. L. Castro Sardiña, Leticia Sabrina Harris, P. Rivero, M. J. Cardenas, L. M. Irisarri, Jorge Gonzalo Nicolás |
| author_role |
author |
| author2 |
Neal, A. L. Castro Sardiña, Leticia Sabrina Harris, P. Rivero, M. J. Cardenas, L. M. Irisarri, Jorge Gonzalo Nicolás |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
COS ESPI Ecosystem services provision index Open data |
| topic |
COS ESPI Ecosystem services provision index Open data |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC. Fil: Segura, C.. No especifíca; Fil: Neal, A. L.. No especifíca; Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Harris, P.. No especifíca; Fil: Rivero, M. J.. No especifíca; Fil: Cardenas, L. M.. No especifíca; Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina |
| description |
To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263700 Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-12 0301-4797 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/263700 |
| identifier_str_mv |
Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-12 0301-4797 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0301479724015597 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2024.121573 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849872440939773952 |
| score |
13.011256 |