Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
- Autores
- Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations.
Fil: Bornancini, Carlos Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Taormina, Mónica Silvia. Polish Academy of Sciences. Nicolaus Copernicus Astronomical Center; Polonia. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; Argentina
Fil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina - Materia
-
GALAXIES: ACTIVE
GALAXIES: STRUCTURE
INFRARED: GALAXIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63576
Ver los metadatos del registro completo
id |
CONICETDig_dc3d95515e2a2aea006500bdb87181f1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63576 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field SouthBornancini, Carlos GuillermoTaormina, Mónica SilviaGarcia Lambas, Diego RodolfoGALAXIES: ACTIVEGALAXIES: STRUCTUREINFRARED: GALAXIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations.Fil: Bornancini, Carlos Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Taormina, Mónica Silvia. Polish Academy of Sciences. Nicolaus Copernicus Astronomical Center; Polonia. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; ArgentinaFil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaEDP Sciences2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63576Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo; Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South; EDP Sciences; Astronomy and Astrophysics; 605; A10; 9-20170004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201629326info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2017/09/aa29326-16/aa29326-16.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:59Zoai:ri.conicet.gov.ar:11336/63576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:00.109CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South |
title |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South |
spellingShingle |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South Bornancini, Carlos Guillermo GALAXIES: ACTIVE GALAXIES: STRUCTURE INFRARED: GALAXIES |
title_short |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South |
title_full |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South |
title_fullStr |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South |
title_full_unstemmed |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South |
title_sort |
Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South |
dc.creator.none.fl_str_mv |
Bornancini, Carlos Guillermo Taormina, Mónica Silvia Garcia Lambas, Diego Rodolfo |
author |
Bornancini, Carlos Guillermo |
author_facet |
Bornancini, Carlos Guillermo Taormina, Mónica Silvia Garcia Lambas, Diego Rodolfo |
author_role |
author |
author2 |
Taormina, Mónica Silvia Garcia Lambas, Diego Rodolfo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GALAXIES: ACTIVE GALAXIES: STRUCTURE INFRARED: GALAXIES |
topic |
GALAXIES: ACTIVE GALAXIES: STRUCTURE INFRARED: GALAXIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations. Fil: Bornancini, Carlos Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Taormina, Mónica Silvia. Polish Academy of Sciences. Nicolaus Copernicus Astronomical Center; Polonia. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; Argentina Fil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina |
description |
Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63576 Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo; Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South; EDP Sciences; Astronomy and Astrophysics; 605; A10; 9-2017 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63576 |
identifier_str_mv |
Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo; Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South; EDP Sciences; Astronomy and Astrophysics; 605; A10; 9-2017 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201629326 info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2017/09/aa29326-16/aa29326-16.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268830442717184 |
score |
13.13397 |