Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South

Autores
Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations.
Fil: Bornancini, Carlos Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Taormina, Mónica Silvia. Polish Academy of Sciences. Nicolaus Copernicus Astronomical Center; Polonia. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; Argentina
Fil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Materia
GALAXIES: ACTIVE
GALAXIES: STRUCTURE
INFRARED: GALAXIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63576

id CONICETDig_dc3d95515e2a2aea006500bdb87181f1
oai_identifier_str oai:ri.conicet.gov.ar:11336/63576
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field SouthBornancini, Carlos GuillermoTaormina, Mónica SilviaGarcia Lambas, Diego RodolfoGALAXIES: ACTIVEGALAXIES: STRUCTUREINFRARED: GALAXIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations.Fil: Bornancini, Carlos Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Taormina, Mónica Silvia. Polish Academy of Sciences. Nicolaus Copernicus Astronomical Center; Polonia. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; ArgentinaFil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaEDP Sciences2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63576Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo; Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South; EDP Sciences; Astronomy and Astrophysics; 605; A10; 9-20170004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201629326info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2017/09/aa29326-16/aa29326-16.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:59Zoai:ri.conicet.gov.ar:11336/63576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:00.109CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
title Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
spellingShingle Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
Bornancini, Carlos Guillermo
GALAXIES: ACTIVE
GALAXIES: STRUCTURE
INFRARED: GALAXIES
title_short Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
title_full Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
title_fullStr Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
title_full_unstemmed Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
title_sort Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South
dc.creator.none.fl_str_mv Bornancini, Carlos Guillermo
Taormina, Mónica Silvia
Garcia Lambas, Diego Rodolfo
author Bornancini, Carlos Guillermo
author_facet Bornancini, Carlos Guillermo
Taormina, Mónica Silvia
Garcia Lambas, Diego Rodolfo
author_role author
author2 Taormina, Mónica Silvia
Garcia Lambas, Diego Rodolfo
author2_role author
author
dc.subject.none.fl_str_mv GALAXIES: ACTIVE
GALAXIES: STRUCTURE
INFRARED: GALAXIES
topic GALAXIES: ACTIVE
GALAXIES: STRUCTURE
INFRARED: GALAXIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations.
Fil: Bornancini, Carlos Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Taormina, Mónica Silvia. Polish Academy of Sciences. Nicolaus Copernicus Astronomical Center; Polonia. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; Argentina
Fil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
description Context. In unified models, different types of active galaxy nuclei (AGN) correspond to a single class of objects, where their observed differences are solely due to the different orientations of the obscuring material around the central inner regions. Recent studies also show that this obscuring material can even extend at galactic scales due to debris from galaxy interactions and/or mergers. In standard unified models the different AGN types are expected to show similar galaxy environments. Aims. We aim to investigate properties and environment of obscured and unobscured AGNs selected from mid-infrared (MIR) bands from the Multiwavelength Survey by Yale-Chile (MUSYC), in order to test the unified model and evolutionary scenarios. Methods. The sample of AGNs was selected from images obtained with the Infrared Array Camera (IRAC) mounted on the Spitzer Space Telescope, based on their MIR colors centered at wavelengths [3.6], [4.5], [5.8] and [8.0] microns. We selected two samples of AGNs with redshifts in the range 1 ≤ z ≤ 2 and rest-frame absolute magnitudes Mv ≤ -21: obscured and unobscured AGNs by means of a simple optical-MIR color cut criterion (R - [4:5] = 3:05.) Results. We find that obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR-selected AGNs have a significant dust extinction. From a cross-correlation with several X-ray surveys, we find that the majority of the AGNs in our sample have X-ray luminosities similar to those found in Seyfert-like galaxies. We study the properties of galaxies surrounding these two samples. Neighbouring galaxies located close to (~200 kpc) obscured AGNs tend to have redder colors, compared to the local environment of unobscured AGNs. Results obtained from a KS test show that the two color distributions are different at ~95% confidence level. We find that obscured AGNs are located in denser local galaxy environments compared to the unobscured AGN sample. Conclusions. Our results suggest that AGN obscuration can occur at galactic scales, possibly due to galaxy interactions or mergers, and that the simple unified model based solely on the local torus orientation may not be sufficient to explain all the observations.
publishDate 2017
dc.date.none.fl_str_mv 2017-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63576
Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo; Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South; EDP Sciences; Astronomy and Astrophysics; 605; A10; 9-2017
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63576
identifier_str_mv Bornancini, Carlos Guillermo; Taormina, Mónica Silvia; Garcia Lambas, Diego Rodolfo; Environment of 1 ≤ z ≤ 2 MIR selected obscured and unobscured AGNs in the Extended Chandra Deep Field South; EDP Sciences; Astronomy and Astrophysics; 605; A10; 9-2017
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201629326
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2017/09/aa29326-16/aa29326-16.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268830442717184
score 13.13397