Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes
- Autores
- Ibanez Barassi, Agustin Mariano; Fittipaldi, Sol; Trujillo, Catalina; Jaramillo, Tania; Torres, Alejandra; Cardona, Juan F.; Rivera, Rodrigo; Slachevsky, Andrea; Garciá, Adolfo; Bertoux, Maxime; Baez, Sandra
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes. Objective: We performed a diagnostic classification analysis using social cognition, cognitive screening (CS), and executive function (EF) measures, and explored which anatomical and functional networks were associated with main predictors. Methods: Multiple group discriminant function analyses (MDAs) and ROC analyses of social cognition (facial emotional recognition, theory of mind), CS, and EF were implemented in 223 participants (bvFTD, AD, PD, controls). Gray matter volume and functional connectivity correlates of top discriminant scores were investigated. Results: Although all patient groups revealed deficits in social cognition, CS, and EF, our classification approach provided robust discriminatory characterizations. Regarding controls, probabilistic social cognition outcomes provided the best characterization for bvFTD (together with CS) and PD, but not AD (for which CS alone was the best predictor). Within patient groups, the best MDA probabilities scores yielded high classification rates for bvFTD versus PD (98.3%, social cognition), AD versus PD (98.6%, social cognition+CS), and bvFTD versus AD (71.7%, social cognition+CS). Top MDA scores were associated with specific patterns of atrophy and functional networks across neurodegenerative conditions. Conclusion: Standardized validated measures of social cognition, in combination with CS, can provide a dimensional classification with specific pathophysiological markers of neurodegeneration diagnoses.
Fil: Ibanez Barassi, Agustin Mariano. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile. Universidad de Dublin; Irlanda. University of California; Estados Unidos
Fil: Fittipaldi, Sol. Universidad Nacional de Córdoba; Argentina. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Trujillo, Catalina. Universidad del Valle; Colombia
Fil: Jaramillo, Tania. Universidad del Valle; Colombia
Fil: Torres, Alejandra. Universidad del Valle; Colombia
Fil: Cardona, Juan F.. Universidad del Valle; Colombia
Fil: Rivera, Rodrigo. Universidad de Chile; Chile
Fil: Slachevsky, Andrea. Universidad de Chile; Chile
Fil: Garciá, Adolfo. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. University of California; Estados Unidos
Fil: Bertoux, Maxime. Universidad Adolfo Ibañez; Chile
Fil: Baez, Sandra. Universidad de los Andes; Colombia - Materia
-
CLASSIFICATION
DEMENTIA
DIAGNOSIS
NEURODEGENERATIVE DISEASES
SOCIAL COGNITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/166974
Ver los metadatos del registro completo
id |
CONICETDig_da34291515d7f8781e7b03c51d2494e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/166974 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive ProcessesIbanez Barassi, Agustin MarianoFittipaldi, SolTrujillo, CatalinaJaramillo, TaniaTorres, AlejandraCardona, Juan F.Rivera, RodrigoSlachevsky, AndreaGarciá, AdolfoBertoux, MaximeBaez, SandraCLASSIFICATIONDEMENTIADIAGNOSISNEURODEGENERATIVE DISEASESSOCIAL COGNITIONhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Background: Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes. Objective: We performed a diagnostic classification analysis using social cognition, cognitive screening (CS), and executive function (EF) measures, and explored which anatomical and functional networks were associated with main predictors. Methods: Multiple group discriminant function analyses (MDAs) and ROC analyses of social cognition (facial emotional recognition, theory of mind), CS, and EF were implemented in 223 participants (bvFTD, AD, PD, controls). Gray matter volume and functional connectivity correlates of top discriminant scores were investigated. Results: Although all patient groups revealed deficits in social cognition, CS, and EF, our classification approach provided robust discriminatory characterizations. Regarding controls, probabilistic social cognition outcomes provided the best characterization for bvFTD (together with CS) and PD, but not AD (for which CS alone was the best predictor). Within patient groups, the best MDA probabilities scores yielded high classification rates for bvFTD versus PD (98.3%, social cognition), AD versus PD (98.6%, social cognition+CS), and bvFTD versus AD (71.7%, social cognition+CS). Top MDA scores were associated with specific patterns of atrophy and functional networks across neurodegenerative conditions. Conclusion: Standardized validated measures of social cognition, in combination with CS, can provide a dimensional classification with specific pathophysiological markers of neurodegeneration diagnoses.Fil: Ibanez Barassi, Agustin Mariano. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile. Universidad de Dublin; Irlanda. University of California; Estados UnidosFil: Fittipaldi, Sol. Universidad Nacional de Córdoba; Argentina. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trujillo, Catalina. Universidad del Valle; ColombiaFil: Jaramillo, Tania. Universidad del Valle; ColombiaFil: Torres, Alejandra. Universidad del Valle; ColombiaFil: Cardona, Juan F.. Universidad del Valle; ColombiaFil: Rivera, Rodrigo. Universidad de Chile; ChileFil: Slachevsky, Andrea. Universidad de Chile; ChileFil: Garciá, Adolfo. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. University of California; Estados UnidosFil: Bertoux, Maxime. Universidad Adolfo Ibañez; ChileFil: Baez, Sandra. Universidad de los Andes; ColombiaIOS Press2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166974Ibanez Barassi, Agustin Mariano; Fittipaldi, Sol; Trujillo, Catalina; Jaramillo, Tania; Torres, Alejandra; et al.; Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes; IOS Press; Journal of Alzheimer's Disease; 83; 1; 8-2021; 227-2481387-2877CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3233/JAD-210163info:eu-repo/semantics/altIdentifier/url/https://content.iospress.com/articles/journal-of-alzheimers-disease/jad210163info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:54Zoai:ri.conicet.gov.ar:11336/166974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:54.839CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes |
title |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes |
spellingShingle |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes Ibanez Barassi, Agustin Mariano CLASSIFICATION DEMENTIA DIAGNOSIS NEURODEGENERATIVE DISEASES SOCIAL COGNITION |
title_short |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes |
title_full |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes |
title_fullStr |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes |
title_full_unstemmed |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes |
title_sort |
Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes |
dc.creator.none.fl_str_mv |
Ibanez Barassi, Agustin Mariano Fittipaldi, Sol Trujillo, Catalina Jaramillo, Tania Torres, Alejandra Cardona, Juan F. Rivera, Rodrigo Slachevsky, Andrea Garciá, Adolfo Bertoux, Maxime Baez, Sandra |
author |
Ibanez Barassi, Agustin Mariano |
author_facet |
Ibanez Barassi, Agustin Mariano Fittipaldi, Sol Trujillo, Catalina Jaramillo, Tania Torres, Alejandra Cardona, Juan F. Rivera, Rodrigo Slachevsky, Andrea Garciá, Adolfo Bertoux, Maxime Baez, Sandra |
author_role |
author |
author2 |
Fittipaldi, Sol Trujillo, Catalina Jaramillo, Tania Torres, Alejandra Cardona, Juan F. Rivera, Rodrigo Slachevsky, Andrea Garciá, Adolfo Bertoux, Maxime Baez, Sandra |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CLASSIFICATION DEMENTIA DIAGNOSIS NEURODEGENERATIVE DISEASES SOCIAL COGNITION |
topic |
CLASSIFICATION DEMENTIA DIAGNOSIS NEURODEGENERATIVE DISEASES SOCIAL COGNITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background: Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes. Objective: We performed a diagnostic classification analysis using social cognition, cognitive screening (CS), and executive function (EF) measures, and explored which anatomical and functional networks were associated with main predictors. Methods: Multiple group discriminant function analyses (MDAs) and ROC analyses of social cognition (facial emotional recognition, theory of mind), CS, and EF were implemented in 223 participants (bvFTD, AD, PD, controls). Gray matter volume and functional connectivity correlates of top discriminant scores were investigated. Results: Although all patient groups revealed deficits in social cognition, CS, and EF, our classification approach provided robust discriminatory characterizations. Regarding controls, probabilistic social cognition outcomes provided the best characterization for bvFTD (together with CS) and PD, but not AD (for which CS alone was the best predictor). Within patient groups, the best MDA probabilities scores yielded high classification rates for bvFTD versus PD (98.3%, social cognition), AD versus PD (98.6%, social cognition+CS), and bvFTD versus AD (71.7%, social cognition+CS). Top MDA scores were associated with specific patterns of atrophy and functional networks across neurodegenerative conditions. Conclusion: Standardized validated measures of social cognition, in combination with CS, can provide a dimensional classification with specific pathophysiological markers of neurodegeneration diagnoses. Fil: Ibanez Barassi, Agustin Mariano. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile. Universidad de Dublin; Irlanda. University of California; Estados Unidos Fil: Fittipaldi, Sol. Universidad Nacional de Córdoba; Argentina. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Trujillo, Catalina. Universidad del Valle; Colombia Fil: Jaramillo, Tania. Universidad del Valle; Colombia Fil: Torres, Alejandra. Universidad del Valle; Colombia Fil: Cardona, Juan F.. Universidad del Valle; Colombia Fil: Rivera, Rodrigo. Universidad de Chile; Chile Fil: Slachevsky, Andrea. Universidad de Chile; Chile Fil: Garciá, Adolfo. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. University of California; Estados Unidos Fil: Bertoux, Maxime. Universidad Adolfo Ibañez; Chile Fil: Baez, Sandra. Universidad de los Andes; Colombia |
description |
Background: Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes. Objective: We performed a diagnostic classification analysis using social cognition, cognitive screening (CS), and executive function (EF) measures, and explored which anatomical and functional networks were associated with main predictors. Methods: Multiple group discriminant function analyses (MDAs) and ROC analyses of social cognition (facial emotional recognition, theory of mind), CS, and EF were implemented in 223 participants (bvFTD, AD, PD, controls). Gray matter volume and functional connectivity correlates of top discriminant scores were investigated. Results: Although all patient groups revealed deficits in social cognition, CS, and EF, our classification approach provided robust discriminatory characterizations. Regarding controls, probabilistic social cognition outcomes provided the best characterization for bvFTD (together with CS) and PD, but not AD (for which CS alone was the best predictor). Within patient groups, the best MDA probabilities scores yielded high classification rates for bvFTD versus PD (98.3%, social cognition), AD versus PD (98.6%, social cognition+CS), and bvFTD versus AD (71.7%, social cognition+CS). Top MDA scores were associated with specific patterns of atrophy and functional networks across neurodegenerative conditions. Conclusion: Standardized validated measures of social cognition, in combination with CS, can provide a dimensional classification with specific pathophysiological markers of neurodegeneration diagnoses. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/166974 Ibanez Barassi, Agustin Mariano; Fittipaldi, Sol; Trujillo, Catalina; Jaramillo, Tania; Torres, Alejandra; et al.; Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes; IOS Press; Journal of Alzheimer's Disease; 83; 1; 8-2021; 227-248 1387-2877 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/166974 |
identifier_str_mv |
Ibanez Barassi, Agustin Mariano; Fittipaldi, Sol; Trujillo, Catalina; Jaramillo, Tania; Torres, Alejandra; et al.; Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes; IOS Press; Journal of Alzheimer's Disease; 83; 1; 8-2021; 227-248 1387-2877 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3233/JAD-210163 info:eu-repo/semantics/altIdentifier/url/https://content.iospress.com/articles/journal-of-alzheimers-disease/jad210163 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOS Press |
publisher.none.fl_str_mv |
IOS Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613706052272128 |
score |
13.069144 |