Phenomenology of the heating, melting and diffusion processes in Au nanoparticles

Autores
Bertoldi, Dalía Surena; Millán, Emmanuel Nicolás; Fernandez Guillermet, Armando Jorge
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The paper reports the results of a Molecular Dynamics study of the heating and melting process of nanoparticles with 1985 to 84703 atoms. Building on a previous study by the present authors [Bertoldi et al. Journal of Physics and Chemistry of Solids, 2017, 111, pp. 286-293] involving the energy versus temperature, the Lindemann index and the radial distribution function, the current work relies on the mean-square displacement, the Lindemann ratio and the simulated snapshots to characterize four regions in the process of heating-to-melting. A general pattern of the atomic configuration evolution upon heating and a systematics of the transition temperatures between the various identified steps, is proposed. In addition, the most significant, so-called “melting step” in this process is analyzed in terms of the quasi-chemical approach proposed by Bertoldi et al., which treats this step by invoking a dynamic equilibrium of the type Au (LEA-SPL) *) Au (HEA-LPL) involving low-energy atoms (LEA) and high-energy atoms (HEA) forming the solid phase-like (SPL) and the liquid phase-like (LPL) states of the system, respectively. The “melting step” is characterized by evaluating the equalGibbs energy temperature, i.e., the “T0 temperature”, previously introduced by the current authors, which is the thermodynamic counterpart of the temperature of fusion of macroscopic elemental solids. The diffusion coefficients at T0 are determined, and their spatial and temperature dependence is discussed. In particular, the activation energy for the atom movements in the HEA-LPL/LEASPL mixture at T0 is reported. The consistency between the current phenomenological picture and microscopic interpretation of the thermodynamic, kinetic and atomic configuration information obtained is highlighted.
Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Millán, Emmanuel Nicolás. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
molecular dynamics
heating and melting process
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167561

id CONICETDig_da2ab48b79581ed7bf20ff0e740a1588
oai_identifier_str oai:ri.conicet.gov.ar:11336/167561
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Phenomenology of the heating, melting and diffusion processes in Au nanoparticlesBertoldi, Dalía SurenaMillán, Emmanuel NicolásFernandez Guillermet, Armando Jorgemolecular dynamicsheating and melting processhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The paper reports the results of a Molecular Dynamics study of the heating and melting process of nanoparticles with 1985 to 84703 atoms. Building on a previous study by the present authors [Bertoldi et al. Journal of Physics and Chemistry of Solids, 2017, 111, pp. 286-293] involving the energy versus temperature, the Lindemann index and the radial distribution function, the current work relies on the mean-square displacement, the Lindemann ratio and the simulated snapshots to characterize four regions in the process of heating-to-melting. A general pattern of the atomic configuration evolution upon heating and a systematics of the transition temperatures between the various identified steps, is proposed. In addition, the most significant, so-called “melting step” in this process is analyzed in terms of the quasi-chemical approach proposed by Bertoldi et al., which treats this step by invoking a dynamic equilibrium of the type Au (LEA-SPL) *) Au (HEA-LPL) involving low-energy atoms (LEA) and high-energy atoms (HEA) forming the solid phase-like (SPL) and the liquid phase-like (LPL) states of the system, respectively. The “melting step” is characterized by evaluating the equalGibbs energy temperature, i.e., the “T0 temperature”, previously introduced by the current authors, which is the thermodynamic counterpart of the temperature of fusion of macroscopic elemental solids. The diffusion coefficients at T0 are determined, and their spatial and temperature dependence is discussed. In particular, the activation energy for the atom movements in the HEA-LPL/LEASPL mixture at T0 is reported. The consistency between the current phenomenological picture and microscopic interpretation of the thermodynamic, kinetic and atomic configuration information obtained is highlighted.Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Millán, Emmanuel Nicolás. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaRoyal Society of Chemistry2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167561Bertoldi, Dalía Surena; Millán, Emmanuel Nicolás; Fernandez Guillermet, Armando Jorge; Phenomenology of the heating, melting and diffusion processes in Au nanoparticles; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 23; 2; 1-2021; 1298-13071463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d0cp04442cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:39Zoai:ri.conicet.gov.ar:11336/167561instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:40.332CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
title Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
spellingShingle Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
Bertoldi, Dalía Surena
molecular dynamics
heating and melting process
title_short Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
title_full Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
title_fullStr Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
title_full_unstemmed Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
title_sort Phenomenology of the heating, melting and diffusion processes in Au nanoparticles
dc.creator.none.fl_str_mv Bertoldi, Dalía Surena
Millán, Emmanuel Nicolás
Fernandez Guillermet, Armando Jorge
author Bertoldi, Dalía Surena
author_facet Bertoldi, Dalía Surena
Millán, Emmanuel Nicolás
Fernandez Guillermet, Armando Jorge
author_role author
author2 Millán, Emmanuel Nicolás
Fernandez Guillermet, Armando Jorge
author2_role author
author
dc.subject.none.fl_str_mv molecular dynamics
heating and melting process
topic molecular dynamics
heating and melting process
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The paper reports the results of a Molecular Dynamics study of the heating and melting process of nanoparticles with 1985 to 84703 atoms. Building on a previous study by the present authors [Bertoldi et al. Journal of Physics and Chemistry of Solids, 2017, 111, pp. 286-293] involving the energy versus temperature, the Lindemann index and the radial distribution function, the current work relies on the mean-square displacement, the Lindemann ratio and the simulated snapshots to characterize four regions in the process of heating-to-melting. A general pattern of the atomic configuration evolution upon heating and a systematics of the transition temperatures between the various identified steps, is proposed. In addition, the most significant, so-called “melting step” in this process is analyzed in terms of the quasi-chemical approach proposed by Bertoldi et al., which treats this step by invoking a dynamic equilibrium of the type Au (LEA-SPL) *) Au (HEA-LPL) involving low-energy atoms (LEA) and high-energy atoms (HEA) forming the solid phase-like (SPL) and the liquid phase-like (LPL) states of the system, respectively. The “melting step” is characterized by evaluating the equalGibbs energy temperature, i.e., the “T0 temperature”, previously introduced by the current authors, which is the thermodynamic counterpart of the temperature of fusion of macroscopic elemental solids. The diffusion coefficients at T0 are determined, and their spatial and temperature dependence is discussed. In particular, the activation energy for the atom movements in the HEA-LPL/LEASPL mixture at T0 is reported. The consistency between the current phenomenological picture and microscopic interpretation of the thermodynamic, kinetic and atomic configuration information obtained is highlighted.
Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Millán, Emmanuel Nicolás. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The paper reports the results of a Molecular Dynamics study of the heating and melting process of nanoparticles with 1985 to 84703 atoms. Building on a previous study by the present authors [Bertoldi et al. Journal of Physics and Chemistry of Solids, 2017, 111, pp. 286-293] involving the energy versus temperature, the Lindemann index and the radial distribution function, the current work relies on the mean-square displacement, the Lindemann ratio and the simulated snapshots to characterize four regions in the process of heating-to-melting. A general pattern of the atomic configuration evolution upon heating and a systematics of the transition temperatures between the various identified steps, is proposed. In addition, the most significant, so-called “melting step” in this process is analyzed in terms of the quasi-chemical approach proposed by Bertoldi et al., which treats this step by invoking a dynamic equilibrium of the type Au (LEA-SPL) *) Au (HEA-LPL) involving low-energy atoms (LEA) and high-energy atoms (HEA) forming the solid phase-like (SPL) and the liquid phase-like (LPL) states of the system, respectively. The “melting step” is characterized by evaluating the equalGibbs energy temperature, i.e., the “T0 temperature”, previously introduced by the current authors, which is the thermodynamic counterpart of the temperature of fusion of macroscopic elemental solids. The diffusion coefficients at T0 are determined, and their spatial and temperature dependence is discussed. In particular, the activation energy for the atom movements in the HEA-LPL/LEASPL mixture at T0 is reported. The consistency between the current phenomenological picture and microscopic interpretation of the thermodynamic, kinetic and atomic configuration information obtained is highlighted.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167561
Bertoldi, Dalía Surena; Millán, Emmanuel Nicolás; Fernandez Guillermet, Armando Jorge; Phenomenology of the heating, melting and diffusion processes in Au nanoparticles; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 23; 2; 1-2021; 1298-1307
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167561
identifier_str_mv Bertoldi, Dalía Surena; Millán, Emmanuel Nicolás; Fernandez Guillermet, Armando Jorge; Phenomenology of the heating, melting and diffusion processes in Au nanoparticles; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 23; 2; 1-2021; 1298-1307
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/d0cp04442c
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781274463666176
score 12.982451