Are remote sensing evapotranspiration models reliable across South American ecoregions?

Autores
Melo, D. C. D.; Anache, J. A. A.; Borges, V. P.; Miralles, D. G.; Martens, B.; Fisher, J. B.; Nóbrega, R. L. B.; Moreno, A.; Cabral, O. M. R.; Rodrigues, T. R.; Bezerra, B.; Silva, C. M. S.; Meira Neto, A. A.; Moura, M. S. B.; Marques, T. V.; Campos, S.; Nogueira, J. S.; Rosolem, R.; Souza, R. M. S.; Antonino, A. C. D.; Holl, D.; Galleguillos, M.; Pérez Quezada, J. F.; Verhoef, A.; Kutzbach, L.; Lima, J. R. S.; Souza, E. S.; Gassmann, María Isabel; Perez, Claudio Fabian; Tonti, Natalia Edith; Posse, G.; Rains, D.; Oliveira, P. T. S.; Wendland, E.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South America. We used meteorological data from 25 flux towers to force four RSBET models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Amsterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith Nagler model (PM-VI). urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0001 was predicted satisfactorily by all four models, with correlations consistently higher (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0002) for GLEAM and PT-JPL, and PM-MOD and PM-VI presenting overall better responses in terms of percent bias (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0003%). As for PM-VI, this outcome is expected, given that the model requires calibration with local data. Model skill seems to be unrelated to land-use but instead presented some dependency on biome and climate, with the models producing the best results for wet to moderately wet environments. Our findings show the suitability of individual models for a number of combinations of land cover types, biomes, and climates. At the same time, no model outperformed the others for all conditions, which emphasizes the need for adapting individual algorithms to take into account intrinsic characteristics of climates and ecosystems in South America.
Fil: Melo, D. C. D.. Universidade Federal Da Paraíba; Brasil
Fil: Anache, J. A. A.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Borges, V. P.. Universidade Federal Da Paraíba; Brasil
Fil: Miralles, D. G.. University of Ghent; Bélgica
Fil: Martens, B.. University of Ghent; Bélgica
Fil: Fisher, J. B.. Chapman University; Estados Unidos
Fil: Nóbrega, R. L. B.. Imperial College London; Reino Unido
Fil: Moreno, A.. University of Montana; Estados Unidos
Fil: Cabral, O. M. R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Rodrigues, T. R.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Bezerra, B.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Silva, C. M. S.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Meira Neto, A. A.. University of Arizona; Estados Unidos
Fil: Moura, M. S. B.. Embrapa Tropical Semi-arid. Brazilian Agricultural Research Corporation; Brasil
Fil: Marques, T. V.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Campos, S.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Nogueira, J. S.. Universidade Federal de Mato Grosso; Brasil
Fil: Rosolem, R.. University of Bristol; Reino Unido
Fil: Souza, R. M. S.. Texas A&M University; Estados Unidos
Fil: Antonino, A. C. D.. Universidade Federal de Pernambuco; Brasil
Fil: Holl, D.. Universitat Hamburg; Alemania
Fil: Galleguillos, M.. Universidad de Chile; Chile
Fil: Pérez Quezada, J. F.. Universidad de Chile; Chile. Instituto de Ecología y Biodiversidad; Chile
Fil: Verhoef, A.. University of Reading; Reino Unido
Fil: Kutzbach, L.. Universitat Hamburg; Alemania
Fil: Lima, J. R. S.. Universidade Federal de Pernambuco; Brasil
Fil: Souza, E. S.. Universidad Federal Rural Pernambuco; Brasil
Fil: Gassmann, María Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Perez, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Tonti, Natalia Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Posse, G.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina
Fil: Rains, D.. University of Ghent; Bélgica
Fil: Oliveira, P. T. S.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Wendland, E.. Universidade de Sao Paulo; Brasil
Materia
MODIS
PENMAN-MONTEITH
PRIESTLEY-TAYLOR
TRANSPIRATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/163318

id CONICETDig_d9ecc6dce3f8c023b12307927d944763
oai_identifier_str oai:ri.conicet.gov.ar:11336/163318
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Are remote sensing evapotranspiration models reliable across South American ecoregions?Melo, D. C. D.Anache, J. A. A.Borges, V. P.Miralles, D. G.Martens, B.Fisher, J. B.Nóbrega, R. L. B.Moreno, A.Cabral, O. M. R.Rodrigues, T. R.Bezerra, B.Silva, C. M. S.Meira Neto, A. A.Moura, M. S. B.Marques, T. V.Campos, S.Nogueira, J. S.Rosolem, R.Souza, R. M. S.Antonino, A. C. D.Holl, D.Galleguillos, M.Pérez Quezada, J. F.Verhoef, A.Kutzbach, L.Lima, J. R. S.Souza, E. S.Gassmann, María IsabelPerez, Claudio FabianTonti, Natalia EdithPosse, G.Rains, D.Oliveira, P. T. S.Wendland, E.MODISPENMAN-MONTEITHPRIESTLEY-TAYLORTRANSPIRATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South America. We used meteorological data from 25 flux towers to force four RSBET models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Amsterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith Nagler model (PM-VI). urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0001 was predicted satisfactorily by all four models, with correlations consistently higher (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0002) for GLEAM and PT-JPL, and PM-MOD and PM-VI presenting overall better responses in terms of percent bias (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0003%). As for PM-VI, this outcome is expected, given that the model requires calibration with local data. Model skill seems to be unrelated to land-use but instead presented some dependency on biome and climate, with the models producing the best results for wet to moderately wet environments. Our findings show the suitability of individual models for a number of combinations of land cover types, biomes, and climates. At the same time, no model outperformed the others for all conditions, which emphasizes the need for adapting individual algorithms to take into account intrinsic characteristics of climates and ecosystems in South America.Fil: Melo, D. C. D.. Universidade Federal Da Paraíba; BrasilFil: Anache, J. A. A.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Borges, V. P.. Universidade Federal Da Paraíba; BrasilFil: Miralles, D. G.. University of Ghent; BélgicaFil: Martens, B.. University of Ghent; BélgicaFil: Fisher, J. B.. Chapman University; Estados UnidosFil: Nóbrega, R. L. B.. Imperial College London; Reino UnidoFil: Moreno, A.. University of Montana; Estados UnidosFil: Cabral, O. M. R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Rodrigues, T. R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Bezerra, B.. Universidade Federal do Rio Grande do Norte; BrasilFil: Silva, C. M. S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Meira Neto, A. A.. University of Arizona; Estados UnidosFil: Moura, M. S. B.. Embrapa Tropical Semi-arid. Brazilian Agricultural Research Corporation; BrasilFil: Marques, T. V.. Universidade Federal do Rio Grande do Norte; BrasilFil: Campos, S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Nogueira, J. S.. Universidade Federal de Mato Grosso; BrasilFil: Rosolem, R.. University of Bristol; Reino UnidoFil: Souza, R. M. S.. Texas A&M University; Estados UnidosFil: Antonino, A. C. D.. Universidade Federal de Pernambuco; BrasilFil: Holl, D.. Universitat Hamburg; AlemaniaFil: Galleguillos, M.. Universidad de Chile; ChileFil: Pérez Quezada, J. F.. Universidad de Chile; Chile. Instituto de Ecología y Biodiversidad; ChileFil: Verhoef, A.. University of Reading; Reino UnidoFil: Kutzbach, L.. Universitat Hamburg; AlemaniaFil: Lima, J. R. S.. Universidade Federal de Pernambuco; BrasilFil: Souza, E. S.. Universidad Federal Rural Pernambuco; BrasilFil: Gassmann, María Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Perez, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Tonti, Natalia Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Posse, G.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; ArgentinaFil: Rains, D.. University of Ghent; BélgicaFil: Oliveira, P. T. S.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Wendland, E.. Universidade de Sao Paulo; BrasilAmerican Geophysical Union2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163318Melo, D. C. D.; Anache, J. A. A.; Borges, V. P.; Miralles, D. G.; Martens, B.; et al.; Are remote sensing evapotranspiration models reliable across South American ecoregions?; American Geophysical Union; Water Resources Research; 57; 11; 11-2021; 1-230043-1397CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028752info:eu-repo/semantics/altIdentifier/doi/10.1029/2020WR028752info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:08Zoai:ri.conicet.gov.ar:11336/163318instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:08.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Are remote sensing evapotranspiration models reliable across South American ecoregions?
title Are remote sensing evapotranspiration models reliable across South American ecoregions?
spellingShingle Are remote sensing evapotranspiration models reliable across South American ecoregions?
Melo, D. C. D.
MODIS
PENMAN-MONTEITH
PRIESTLEY-TAYLOR
TRANSPIRATION
title_short Are remote sensing evapotranspiration models reliable across South American ecoregions?
title_full Are remote sensing evapotranspiration models reliable across South American ecoregions?
title_fullStr Are remote sensing evapotranspiration models reliable across South American ecoregions?
title_full_unstemmed Are remote sensing evapotranspiration models reliable across South American ecoregions?
title_sort Are remote sensing evapotranspiration models reliable across South American ecoregions?
dc.creator.none.fl_str_mv Melo, D. C. D.
Anache, J. A. A.
Borges, V. P.
Miralles, D. G.
Martens, B.
Fisher, J. B.
Nóbrega, R. L. B.
Moreno, A.
Cabral, O. M. R.
Rodrigues, T. R.
Bezerra, B.
Silva, C. M. S.
Meira Neto, A. A.
Moura, M. S. B.
Marques, T. V.
Campos, S.
Nogueira, J. S.
Rosolem, R.
Souza, R. M. S.
Antonino, A. C. D.
Holl, D.
Galleguillos, M.
Pérez Quezada, J. F.
Verhoef, A.
Kutzbach, L.
Lima, J. R. S.
Souza, E. S.
Gassmann, María Isabel
Perez, Claudio Fabian
Tonti, Natalia Edith
Posse, G.
Rains, D.
Oliveira, P. T. S.
Wendland, E.
author Melo, D. C. D.
author_facet Melo, D. C. D.
Anache, J. A. A.
Borges, V. P.
Miralles, D. G.
Martens, B.
Fisher, J. B.
Nóbrega, R. L. B.
Moreno, A.
Cabral, O. M. R.
Rodrigues, T. R.
Bezerra, B.
Silva, C. M. S.
Meira Neto, A. A.
Moura, M. S. B.
Marques, T. V.
Campos, S.
Nogueira, J. S.
Rosolem, R.
Souza, R. M. S.
Antonino, A. C. D.
Holl, D.
Galleguillos, M.
Pérez Quezada, J. F.
Verhoef, A.
Kutzbach, L.
Lima, J. R. S.
Souza, E. S.
Gassmann, María Isabel
Perez, Claudio Fabian
Tonti, Natalia Edith
Posse, G.
Rains, D.
Oliveira, P. T. S.
Wendland, E.
author_role author
author2 Anache, J. A. A.
Borges, V. P.
Miralles, D. G.
Martens, B.
Fisher, J. B.
Nóbrega, R. L. B.
Moreno, A.
Cabral, O. M. R.
Rodrigues, T. R.
Bezerra, B.
Silva, C. M. S.
Meira Neto, A. A.
Moura, M. S. B.
Marques, T. V.
Campos, S.
Nogueira, J. S.
Rosolem, R.
Souza, R. M. S.
Antonino, A. C. D.
Holl, D.
Galleguillos, M.
Pérez Quezada, J. F.
Verhoef, A.
Kutzbach, L.
Lima, J. R. S.
Souza, E. S.
Gassmann, María Isabel
Perez, Claudio Fabian
Tonti, Natalia Edith
Posse, G.
Rains, D.
Oliveira, P. T. S.
Wendland, E.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MODIS
PENMAN-MONTEITH
PRIESTLEY-TAYLOR
TRANSPIRATION
topic MODIS
PENMAN-MONTEITH
PRIESTLEY-TAYLOR
TRANSPIRATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South America. We used meteorological data from 25 flux towers to force four RSBET models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Amsterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith Nagler model (PM-VI). urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0001 was predicted satisfactorily by all four models, with correlations consistently higher (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0002) for GLEAM and PT-JPL, and PM-MOD and PM-VI presenting overall better responses in terms of percent bias (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0003%). As for PM-VI, this outcome is expected, given that the model requires calibration with local data. Model skill seems to be unrelated to land-use but instead presented some dependency on biome and climate, with the models producing the best results for wet to moderately wet environments. Our findings show the suitability of individual models for a number of combinations of land cover types, biomes, and climates. At the same time, no model outperformed the others for all conditions, which emphasizes the need for adapting individual algorithms to take into account intrinsic characteristics of climates and ecosystems in South America.
Fil: Melo, D. C. D.. Universidade Federal Da Paraíba; Brasil
Fil: Anache, J. A. A.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Borges, V. P.. Universidade Federal Da Paraíba; Brasil
Fil: Miralles, D. G.. University of Ghent; Bélgica
Fil: Martens, B.. University of Ghent; Bélgica
Fil: Fisher, J. B.. Chapman University; Estados Unidos
Fil: Nóbrega, R. L. B.. Imperial College London; Reino Unido
Fil: Moreno, A.. University of Montana; Estados Unidos
Fil: Cabral, O. M. R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Rodrigues, T. R.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Bezerra, B.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Silva, C. M. S.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Meira Neto, A. A.. University of Arizona; Estados Unidos
Fil: Moura, M. S. B.. Embrapa Tropical Semi-arid. Brazilian Agricultural Research Corporation; Brasil
Fil: Marques, T. V.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Campos, S.. Universidade Federal do Rio Grande do Norte; Brasil
Fil: Nogueira, J. S.. Universidade Federal de Mato Grosso; Brasil
Fil: Rosolem, R.. University of Bristol; Reino Unido
Fil: Souza, R. M. S.. Texas A&M University; Estados Unidos
Fil: Antonino, A. C. D.. Universidade Federal de Pernambuco; Brasil
Fil: Holl, D.. Universitat Hamburg; Alemania
Fil: Galleguillos, M.. Universidad de Chile; Chile
Fil: Pérez Quezada, J. F.. Universidad de Chile; Chile. Instituto de Ecología y Biodiversidad; Chile
Fil: Verhoef, A.. University of Reading; Reino Unido
Fil: Kutzbach, L.. Universitat Hamburg; Alemania
Fil: Lima, J. R. S.. Universidade Federal de Pernambuco; Brasil
Fil: Souza, E. S.. Universidad Federal Rural Pernambuco; Brasil
Fil: Gassmann, María Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Perez, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Tonti, Natalia Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Posse, G.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina
Fil: Rains, D.. University of Ghent; Bélgica
Fil: Oliveira, P. T. S.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Wendland, E.. Universidade de Sao Paulo; Brasil
description Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South America. We used meteorological data from 25 flux towers to force four RSBET models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Amsterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith Nagler model (PM-VI). urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0001 was predicted satisfactorily by all four models, with correlations consistently higher (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0002) for GLEAM and PT-JPL, and PM-MOD and PM-VI presenting overall better responses in terms of percent bias (urn:x-wiley:00431397:media:wrcr25611:wrcr25611-math-0003%). As for PM-VI, this outcome is expected, given that the model requires calibration with local data. Model skill seems to be unrelated to land-use but instead presented some dependency on biome and climate, with the models producing the best results for wet to moderately wet environments. Our findings show the suitability of individual models for a number of combinations of land cover types, biomes, and climates. At the same time, no model outperformed the others for all conditions, which emphasizes the need for adapting individual algorithms to take into account intrinsic characteristics of climates and ecosystems in South America.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/163318
Melo, D. C. D.; Anache, J. A. A.; Borges, V. P.; Miralles, D. G.; Martens, B.; et al.; Are remote sensing evapotranspiration models reliable across South American ecoregions?; American Geophysical Union; Water Resources Research; 57; 11; 11-2021; 1-23
0043-1397
CONICET Digital
CONICET
url http://hdl.handle.net/11336/163318
identifier_str_mv Melo, D. C. D.; Anache, J. A. A.; Borges, V. P.; Miralles, D. G.; Martens, B.; et al.; Are remote sensing evapotranspiration models reliable across South American ecoregions?; American Geophysical Union; Water Resources Research; 57; 11; 11-2021; 1-23
0043-1397
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028752
info:eu-repo/semantics/altIdentifier/doi/10.1029/2020WR028752
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269739637800960
score 13.13397