A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy
- Autores
- Soulé, Ezequiel Rodolfo; Rey, Alejandro D.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new computational strategy is proposed to approximate, with a simple but accurate expression, the Maier–Saupe free energy for nematic order. Instead of the traditional approach of expanding the free energy with a truncated Taylor series, we employ a least-squares fitting to obtain the coefficients of a polynomial expression. Both methods are compared, and the fitting with at most five polynomial terms is shown to provide a satisfactory fitting, and to give much more accurate results than the traditional Taylor expansion. We perform the analysis in terms of the tensor order parameter, so the results are valid in uniaxial and biaxial states.
Fil: Soulé, Ezequiel Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Rey, Alejandro D.. McGill University; Canadá - Materia
-
Liquid Crystal
Phase Transition
Maier–Saupe Theory
Landau–De Gennes Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9754
Ver los metadatos del registro completo
id |
CONICETDig_d97c906b5409f1c8a3d38ffc37c1b72b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9754 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energySoulé, Ezequiel RodolfoRey, Alejandro D.Liquid CrystalPhase TransitionMaier–Saupe TheoryLandau–De Gennes Theoryhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2A new computational strategy is proposed to approximate, with a simple but accurate expression, the Maier–Saupe free energy for nematic order. Instead of the traditional approach of expanding the free energy with a truncated Taylor series, we employ a least-squares fitting to obtain the coefficients of a polynomial expression. Both methods are compared, and the fitting with at most five polynomial terms is shown to provide a satisfactory fitting, and to give much more accurate results than the traditional Taylor expansion. We perform the analysis in terms of the tensor order parameter, so the results are valid in uniaxial and biaxial states.Fil: Soulé, Ezequiel Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Rey, Alejandro D.. McGill University; CanadáTaylor & Francis Ltd2011-02-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9754Soulé, Ezequiel Rodolfo; Rey, Alejandro D.; A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy; Taylor & Francis Ltd; Liquid Crystals; 38; 2; 16-2-2011; 201-2050267-8292enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/02678292.2010.539303info:eu-repo/semantics/altIdentifier/doi/10.1080/02678292.2010.539303info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:52:21Zoai:ri.conicet.gov.ar:11336/9754instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:52:21.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy |
title |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy |
spellingShingle |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy Soulé, Ezequiel Rodolfo Liquid Crystal Phase Transition Maier–Saupe Theory Landau–De Gennes Theory |
title_short |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy |
title_full |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy |
title_fullStr |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy |
title_full_unstemmed |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy |
title_sort |
A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy |
dc.creator.none.fl_str_mv |
Soulé, Ezequiel Rodolfo Rey, Alejandro D. |
author |
Soulé, Ezequiel Rodolfo |
author_facet |
Soulé, Ezequiel Rodolfo Rey, Alejandro D. |
author_role |
author |
author2 |
Rey, Alejandro D. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Liquid Crystal Phase Transition Maier–Saupe Theory Landau–De Gennes Theory |
topic |
Liquid Crystal Phase Transition Maier–Saupe Theory Landau–De Gennes Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A new computational strategy is proposed to approximate, with a simple but accurate expression, the Maier–Saupe free energy for nematic order. Instead of the traditional approach of expanding the free energy with a truncated Taylor series, we employ a least-squares fitting to obtain the coefficients of a polynomial expression. Both methods are compared, and the fitting with at most five polynomial terms is shown to provide a satisfactory fitting, and to give much more accurate results than the traditional Taylor expansion. We perform the analysis in terms of the tensor order parameter, so the results are valid in uniaxial and biaxial states. Fil: Soulé, Ezequiel Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Rey, Alejandro D.. McGill University; Canadá |
description |
A new computational strategy is proposed to approximate, with a simple but accurate expression, the Maier–Saupe free energy for nematic order. Instead of the traditional approach of expanding the free energy with a truncated Taylor series, we employ a least-squares fitting to obtain the coefficients of a polynomial expression. Both methods are compared, and the fitting with at most five polynomial terms is shown to provide a satisfactory fitting, and to give much more accurate results than the traditional Taylor expansion. We perform the analysis in terms of the tensor order parameter, so the results are valid in uniaxial and biaxial states. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-02-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9754 Soulé, Ezequiel Rodolfo; Rey, Alejandro D.; A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy; Taylor & Francis Ltd; Liquid Crystals; 38; 2; 16-2-2011; 201-205 0267-8292 |
url |
http://hdl.handle.net/11336/9754 |
identifier_str_mv |
Soulé, Ezequiel Rodolfo; Rey, Alejandro D.; A good and computationally efficient polynomial approximation to the Maier–Saupe nematic free energy; Taylor & Francis Ltd; Liquid Crystals; 38; 2; 16-2-2011; 201-205 0267-8292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/02678292.2010.539303 info:eu-repo/semantics/altIdentifier/doi/10.1080/02678292.2010.539303 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606155500191744 |
score |
13.001348 |