Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247

Autores
Hero, Johan Sebastian; Pisa, José Horacio; Perotti, Nora Ines; Romero, Cintia Mariana; Martinez, Maria Alejandra
Año de publicación
2015
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In nature, the plant biomass is degraded by a process that requires the cooperative action of multiple microorganisms capable of producing a variety of enzymes to attack the complex structure of lignocelluloses. This work assessed the production and the enzymatic activity over the main hemicellulolytic fraction of plant biomass, xylan, in monoculture and co-culture systems of bacteria isolated from regional niches associated with sugar cane bagasse. The enzyme activity was estimated by measuring reducing sugars released using the dinitrosalicylic acid method. All cultivation assays were performed at 200 rpm and 30 °C in a diluted peptone broth supplemented with 1% CMC (w/v). The viability and the growth of both isolates were estimated by the number of colony forming units, fact that was possible since both isolates exhibited different colony morphology. The specific xylanolytic activity of the co-culture of Bacillus sp. AR03 and Paenibacillus sp. AR247 was of 7.03 ± 0.46 IU/mg and 8.36 ± 0.49 IU/mg at 48 h and 96 h of cultivation, respectively. In contrast, each isolate assayed simultaneously under identical conditions, produced significantly lower xylanase activities, even when both isolates grew similarly in both, individual and co-cultures, reaching approximately 1011 CFU/ml in all cases. These values were of 4.18 ± 0.24 IU/mg and 4.55 ± 0.29 IU/mg of xylanolytic activity at 48 h and 96 h, respectively, for Bacillus sp. AR03, while Paenibacillus sp. AR247 reached values of 0.59 ± 0.09 IU/mg and 0.40 ± 0.03 IU/mg at the same periods of cultivation. When mixtures (1:1) of the cell-free supernatant of individual cultures were assayed, it was observed that the enzymatic activity reached a maximum of 4.16 ± 0.39 IU/mg after 48 h of cultivation. This value was close to that obtained by the sum of the enzymatic activity of individual cultures, which was 4.77 IU/mg, for the same cultivation time. The obtained results were consistent with the observation of a synergistic effect on the degradation of xylan in the co-culture evaluated, with an estimated degree of synergism of 1.69 at 96 h. This synergy, which has been described for enzyme mixtures on industrial substrates, was observed here during the co-cultivation of Bacillus sp. AR03 and Paenibacillus sp. AR247. This system displayed a higher xylanolytic activity with respect to the individual cultivation of each isolate and a different zymographic pattern along the cultivation period. The obtained results of the xylanolytic activity for individual strains and the co-culture might indicate that the observed effect could not depend on an only addition of enzyme activities so that we may suggest the existence of a synergistic cooperation during the growth in the co-cultivation of the microorganism evaluated.
Fil: Hero, Johan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Pisa, José Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Perotti, Nora Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Romero, Cintia Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
XI Congreso Argentino de Microbiología General
Córdoba
Argentina
Asociación Civil de Microbiología General
Materia
XYLANASES
BACILLUS
PAENIBACILLUS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/189545

id CONICETDig_d939d65e4ae5dfeac376f5ba2fc6e903
oai_identifier_str oai:ri.conicet.gov.ar:11336/189545
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247Hero, Johan SebastianPisa, José HoracioPerotti, Nora InesRomero, Cintia MarianaMartinez, Maria AlejandraXYLANASESBACILLUSPAENIBACILLUShttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2In nature, the plant biomass is degraded by a process that requires the cooperative action of multiple microorganisms capable of producing a variety of enzymes to attack the complex structure of lignocelluloses. This work assessed the production and the enzymatic activity over the main hemicellulolytic fraction of plant biomass, xylan, in monoculture and co-culture systems of bacteria isolated from regional niches associated with sugar cane bagasse. The enzyme activity was estimated by measuring reducing sugars released using the dinitrosalicylic acid method. All cultivation assays were performed at 200 rpm and 30 °C in a diluted peptone broth supplemented with 1% CMC (w/v). The viability and the growth of both isolates were estimated by the number of colony forming units, fact that was possible since both isolates exhibited different colony morphology. The specific xylanolytic activity of the co-culture of Bacillus sp. AR03 and Paenibacillus sp. AR247 was of 7.03 ± 0.46 IU/mg and 8.36 ± 0.49 IU/mg at 48 h and 96 h of cultivation, respectively. In contrast, each isolate assayed simultaneously under identical conditions, produced significantly lower xylanase activities, even when both isolates grew similarly in both, individual and co-cultures, reaching approximately 1011 CFU/ml in all cases. These values were of 4.18 ± 0.24 IU/mg and 4.55 ± 0.29 IU/mg of xylanolytic activity at 48 h and 96 h, respectively, for Bacillus sp. AR03, while Paenibacillus sp. AR247 reached values of 0.59 ± 0.09 IU/mg and 0.40 ± 0.03 IU/mg at the same periods of cultivation. When mixtures (1:1) of the cell-free supernatant of individual cultures were assayed, it was observed that the enzymatic activity reached a maximum of 4.16 ± 0.39 IU/mg after 48 h of cultivation. This value was close to that obtained by the sum of the enzymatic activity of individual cultures, which was 4.77 IU/mg, for the same cultivation time. The obtained results were consistent with the observation of a synergistic effect on the degradation of xylan in the co-culture evaluated, with an estimated degree of synergism of 1.69 at 96 h. This synergy, which has been described for enzyme mixtures on industrial substrates, was observed here during the co-cultivation of Bacillus sp. AR03 and Paenibacillus sp. AR247. This system displayed a higher xylanolytic activity with respect to the individual cultivation of each isolate and a different zymographic pattern along the cultivation period. The obtained results of the xylanolytic activity for individual strains and the co-culture might indicate that the observed effect could not depend on an only addition of enzyme activities so that we may suggest the existence of a synergistic cooperation during the growth in the co-cultivation of the microorganism evaluated.Fil: Hero, Johan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Pisa, José Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Perotti, Nora Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Romero, Cintia Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaXI Congreso Argentino de Microbiología GeneralCórdobaArgentinaAsociación Civil de Microbiología GeneralAsociación Civil de Microbiología General2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/mswordapplication/pdfhttp://hdl.handle.net/11336/189545Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247; XI Congreso Argentino de Microbiología General; Córdoba; Argentina; 2015; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-SAMIGE-2015.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:40Zoai:ri.conicet.gov.ar:11336/189545instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:40.635CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
title Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
spellingShingle Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
Hero, Johan Sebastian
XYLANASES
BACILLUS
PAENIBACILLUS
title_short Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
title_full Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
title_fullStr Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
title_full_unstemmed Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
title_sort Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247
dc.creator.none.fl_str_mv Hero, Johan Sebastian
Pisa, José Horacio
Perotti, Nora Ines
Romero, Cintia Mariana
Martinez, Maria Alejandra
author Hero, Johan Sebastian
author_facet Hero, Johan Sebastian
Pisa, José Horacio
Perotti, Nora Ines
Romero, Cintia Mariana
Martinez, Maria Alejandra
author_role author
author2 Pisa, José Horacio
Perotti, Nora Ines
Romero, Cintia Mariana
Martinez, Maria Alejandra
author2_role author
author
author
author
dc.subject.none.fl_str_mv XYLANASES
BACILLUS
PAENIBACILLUS
topic XYLANASES
BACILLUS
PAENIBACILLUS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In nature, the plant biomass is degraded by a process that requires the cooperative action of multiple microorganisms capable of producing a variety of enzymes to attack the complex structure of lignocelluloses. This work assessed the production and the enzymatic activity over the main hemicellulolytic fraction of plant biomass, xylan, in monoculture and co-culture systems of bacteria isolated from regional niches associated with sugar cane bagasse. The enzyme activity was estimated by measuring reducing sugars released using the dinitrosalicylic acid method. All cultivation assays were performed at 200 rpm and 30 °C in a diluted peptone broth supplemented with 1% CMC (w/v). The viability and the growth of both isolates were estimated by the number of colony forming units, fact that was possible since both isolates exhibited different colony morphology. The specific xylanolytic activity of the co-culture of Bacillus sp. AR03 and Paenibacillus sp. AR247 was of 7.03 ± 0.46 IU/mg and 8.36 ± 0.49 IU/mg at 48 h and 96 h of cultivation, respectively. In contrast, each isolate assayed simultaneously under identical conditions, produced significantly lower xylanase activities, even when both isolates grew similarly in both, individual and co-cultures, reaching approximately 1011 CFU/ml in all cases. These values were of 4.18 ± 0.24 IU/mg and 4.55 ± 0.29 IU/mg of xylanolytic activity at 48 h and 96 h, respectively, for Bacillus sp. AR03, while Paenibacillus sp. AR247 reached values of 0.59 ± 0.09 IU/mg and 0.40 ± 0.03 IU/mg at the same periods of cultivation. When mixtures (1:1) of the cell-free supernatant of individual cultures were assayed, it was observed that the enzymatic activity reached a maximum of 4.16 ± 0.39 IU/mg after 48 h of cultivation. This value was close to that obtained by the sum of the enzymatic activity of individual cultures, which was 4.77 IU/mg, for the same cultivation time. The obtained results were consistent with the observation of a synergistic effect on the degradation of xylan in the co-culture evaluated, with an estimated degree of synergism of 1.69 at 96 h. This synergy, which has been described for enzyme mixtures on industrial substrates, was observed here during the co-cultivation of Bacillus sp. AR03 and Paenibacillus sp. AR247. This system displayed a higher xylanolytic activity with respect to the individual cultivation of each isolate and a different zymographic pattern along the cultivation period. The obtained results of the xylanolytic activity for individual strains and the co-culture might indicate that the observed effect could not depend on an only addition of enzyme activities so that we may suggest the existence of a synergistic cooperation during the growth in the co-cultivation of the microorganism evaluated.
Fil: Hero, Johan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Pisa, José Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Perotti, Nora Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Romero, Cintia Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
XI Congreso Argentino de Microbiología General
Córdoba
Argentina
Asociación Civil de Microbiología General
description In nature, the plant biomass is degraded by a process that requires the cooperative action of multiple microorganisms capable of producing a variety of enzymes to attack the complex structure of lignocelluloses. This work assessed the production and the enzymatic activity over the main hemicellulolytic fraction of plant biomass, xylan, in monoculture and co-culture systems of bacteria isolated from regional niches associated with sugar cane bagasse. The enzyme activity was estimated by measuring reducing sugars released using the dinitrosalicylic acid method. All cultivation assays were performed at 200 rpm and 30 °C in a diluted peptone broth supplemented with 1% CMC (w/v). The viability and the growth of both isolates were estimated by the number of colony forming units, fact that was possible since both isolates exhibited different colony morphology. The specific xylanolytic activity of the co-culture of Bacillus sp. AR03 and Paenibacillus sp. AR247 was of 7.03 ± 0.46 IU/mg and 8.36 ± 0.49 IU/mg at 48 h and 96 h of cultivation, respectively. In contrast, each isolate assayed simultaneously under identical conditions, produced significantly lower xylanase activities, even when both isolates grew similarly in both, individual and co-cultures, reaching approximately 1011 CFU/ml in all cases. These values were of 4.18 ± 0.24 IU/mg and 4.55 ± 0.29 IU/mg of xylanolytic activity at 48 h and 96 h, respectively, for Bacillus sp. AR03, while Paenibacillus sp. AR247 reached values of 0.59 ± 0.09 IU/mg and 0.40 ± 0.03 IU/mg at the same periods of cultivation. When mixtures (1:1) of the cell-free supernatant of individual cultures were assayed, it was observed that the enzymatic activity reached a maximum of 4.16 ± 0.39 IU/mg after 48 h of cultivation. This value was close to that obtained by the sum of the enzymatic activity of individual cultures, which was 4.77 IU/mg, for the same cultivation time. The obtained results were consistent with the observation of a synergistic effect on the degradation of xylan in the co-culture evaluated, with an estimated degree of synergism of 1.69 at 96 h. This synergy, which has been described for enzyme mixtures on industrial substrates, was observed here during the co-cultivation of Bacillus sp. AR03 and Paenibacillus sp. AR247. This system displayed a higher xylanolytic activity with respect to the individual cultivation of each isolate and a different zymographic pattern along the cultivation period. The obtained results of the xylanolytic activity for individual strains and the co-culture might indicate that the observed effect could not depend on an only addition of enzyme activities so that we may suggest the existence of a synergistic cooperation during the growth in the co-cultivation of the microorganism evaluated.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/189545
Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247; XI Congreso Argentino de Microbiología General; Córdoba; Argentina; 2015; 1-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/189545
identifier_str_mv Synergistic effect of xylanases produced in co-culture of bacillus sp. Ar03 and paenibacillus sp. Ar247; XI Congreso Argentino de Microbiología General; Córdoba; Argentina; 2015; 1-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-SAMIGE-2015.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/msword
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Asociación Civil de Microbiología General
publisher.none.fl_str_mv Asociación Civil de Microbiología General
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613188249714688
score 13.070432