A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometr...

Autores
Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed.
Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Stripeikis, Jorge Daniel. Instituto Tecnológico de Buenos Aires. Departamento de Ingeniería Química; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
Fil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Materia
Ann
Experimental Design
Thermospray Flame Furnace Atomic Absorption Spectrometry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56179

id CONICETDig_d91ff06c420d8e642ab59936aa0ded00
oai_identifier_str oai:ri.conicet.gov.ar:11336/56179
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometryMorzan, Ezequiel MartinStripeikis, Jorge DanielGoicoechea, Hector CasimiroTudino, Mabel BeatrizAnnExperimental DesignThermospray Flame Furnace Atomic Absorption Spectrometryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed.Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Stripeikis, Jorge Daniel. Instituto Tecnológico de Buenos Aires. Departamento de Ingeniería Química; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaElsevier Science2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56179Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz; A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 151; 2-2016; 44-500169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.11.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915003196info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:39Zoai:ri.conicet.gov.ar:11336/56179instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:39.863CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
title A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
spellingShingle A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
Morzan, Ezequiel Martin
Ann
Experimental Design
Thermospray Flame Furnace Atomic Absorption Spectrometry
title_short A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
title_full A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
title_fullStr A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
title_full_unstemmed A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
title_sort A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry
dc.creator.none.fl_str_mv Morzan, Ezequiel Martin
Stripeikis, Jorge Daniel
Goicoechea, Hector Casimiro
Tudino, Mabel Beatriz
author Morzan, Ezequiel Martin
author_facet Morzan, Ezequiel Martin
Stripeikis, Jorge Daniel
Goicoechea, Hector Casimiro
Tudino, Mabel Beatriz
author_role author
author2 Stripeikis, Jorge Daniel
Goicoechea, Hector Casimiro
Tudino, Mabel Beatriz
author2_role author
author
author
dc.subject.none.fl_str_mv Ann
Experimental Design
Thermospray Flame Furnace Atomic Absorption Spectrometry
topic Ann
Experimental Design
Thermospray Flame Furnace Atomic Absorption Spectrometry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed.
Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Stripeikis, Jorge Daniel. Instituto Tecnológico de Buenos Aires. Departamento de Ingeniería Química; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
Fil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
description In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56179
Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz; A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 151; 2-2016; 44-50
0169-7439
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56179
identifier_str_mv Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz; A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 151; 2-2016; 44-50
0169-7439
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.11.011
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915003196
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269174019129344
score 13.13397