A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometr...
- Autores
- Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed.
Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Stripeikis, Jorge Daniel. Instituto Tecnológico de Buenos Aires. Departamento de Ingeniería Química; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
Fil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina - Materia
-
Ann
Experimental Design
Thermospray Flame Furnace Atomic Absorption Spectrometry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56179
Ver los metadatos del registro completo
id |
CONICETDig_d91ff06c420d8e642ab59936aa0ded00 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56179 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometryMorzan, Ezequiel MartinStripeikis, Jorge DanielGoicoechea, Hector CasimiroTudino, Mabel BeatrizAnnExperimental DesignThermospray Flame Furnace Atomic Absorption Spectrometryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed.Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Stripeikis, Jorge Daniel. Instituto Tecnológico de Buenos Aires. Departamento de Ingeniería Química; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaElsevier Science2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56179Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz; A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 151; 2-2016; 44-500169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.11.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915003196info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:39Zoai:ri.conicet.gov.ar:11336/56179instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:39.863CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry |
title |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry |
spellingShingle |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry Morzan, Ezequiel Martin Ann Experimental Design Thermospray Flame Furnace Atomic Absorption Spectrometry |
title_short |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry |
title_full |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry |
title_fullStr |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry |
title_full_unstemmed |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry |
title_sort |
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry |
dc.creator.none.fl_str_mv |
Morzan, Ezequiel Martin Stripeikis, Jorge Daniel Goicoechea, Hector Casimiro Tudino, Mabel Beatriz |
author |
Morzan, Ezequiel Martin |
author_facet |
Morzan, Ezequiel Martin Stripeikis, Jorge Daniel Goicoechea, Hector Casimiro Tudino, Mabel Beatriz |
author_role |
author |
author2 |
Stripeikis, Jorge Daniel Goicoechea, Hector Casimiro Tudino, Mabel Beatriz |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ann Experimental Design Thermospray Flame Furnace Atomic Absorption Spectrometry |
topic |
Ann Experimental Design Thermospray Flame Furnace Atomic Absorption Spectrometry |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed. Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Stripeikis, Jorge Daniel. Instituto Tecnológico de Buenos Aires. Departamento de Ingeniería Química; Argentina Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina Fil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina |
description |
In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol inwaterwere assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube whichwas divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box-Behnken design (BBD) was employed in each one of the regions. The nameMultiple Box-Behnken design (MBBD)was given to this newapproach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56179 Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz; A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 151; 2-2016; 44-50 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56179 |
identifier_str_mv |
Morzan, Ezequiel Martin; Stripeikis, Jorge Daniel; Goicoechea, Hector Casimiro; Tudino, Mabel Beatriz; A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 151; 2-2016; 44-50 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.11.011 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915003196 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269174019129344 |
score |
13.13397 |