Human robot interaction based on wearable IMU sensor and laser range finder

Autores
Cifuentes, Carlos; Freire Bastos, Teodiano; Carelli Albarracin, Ricardo Oscar; Frizera Neto, Anselmo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Service robots are not only expected to navigate within the environment, as they also will may with people. Human tracking by mobile robots is essential for service robots and human interaction applications. In this work, the goal is to add a more natural robot–human following in front based on the normal human gait model. This approach proposes implementing and evaluating a human–robot interaction strategy, using the integration of a LRF (Laser Range Finder) tracking of human legs with wearable IMU (Inertial Measurement Unit) sensors for capturing the human movement during the gait. The work was carried out in four stages: first, the definition of the model of human–robot interaction and the control proposal were developed. Second, the parameters based on the human gait were estimated. Third, the robot and sensor integration setup are also proposed. Finally, the description of the algorithm for parameters detection is presented. In the experimental study, despite of the continuous oscillation during the walking, the parameters estimation was precise and unbiased, showing also repeatability with human linear velocities changes. The controller was evaluated with an eight-shaped curve, showing the stability of the controller even with sharp changes in the human path during real experiments.
Fil: Cifuentes, Carlos. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; Brasil
Fil: Freire Bastos, Teodiano. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; Brasil
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina
Fil: Frizera Neto, Anselmo. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; Brasil
Materia
Human-Robot Interaction
Imu Sensor
Laser Range Finder
Human Tracking
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5002

id CONICETDig_d7ca75ed8d7fbde9dcc81320512f38e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/5002
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Human robot interaction based on wearable IMU sensor and laser range finderCifuentes, CarlosFreire Bastos, TeodianoCarelli Albarracin, Ricardo OscarFrizera Neto, AnselmoHuman-Robot InteractionImu SensorLaser Range FinderHuman Trackinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Service robots are not only expected to navigate within the environment, as they also will may with people. Human tracking by mobile robots is essential for service robots and human interaction applications. In this work, the goal is to add a more natural robot–human following in front based on the normal human gait model. This approach proposes implementing and evaluating a human–robot interaction strategy, using the integration of a LRF (Laser Range Finder) tracking of human legs with wearable IMU (Inertial Measurement Unit) sensors for capturing the human movement during the gait. The work was carried out in four stages: first, the definition of the model of human–robot interaction and the control proposal were developed. Second, the parameters based on the human gait were estimated. Third, the robot and sensor integration setup are also proposed. Finally, the description of the algorithm for parameters detection is presented. In the experimental study, despite of the continuous oscillation during the walking, the parameters estimation was precise and unbiased, showing also repeatability with human linear velocities changes. The controller was evaluated with an eight-shaped curve, showing the stability of the controller even with sharp changes in the human path during real experiments.Fil: Cifuentes, Carlos. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; BrasilFil: Freire Bastos, Teodiano. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; BrasilFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Frizera Neto, Anselmo. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; BrasilElsevier2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5002Cifuentes, Carlos; Freire Bastos, Teodiano; Carelli Albarracin, Ricardo Oscar; Frizera Neto, Anselmo; Human robot interaction based on wearable IMU sensor and laser range finder; Elsevier; Robotics And Autonomous Systems; 62; 6-2014; 1425-14390921-8890enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0921889014001122info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2014.06.001info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:40Zoai:ri.conicet.gov.ar:11336/5002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:40.399CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Human robot interaction based on wearable IMU sensor and laser range finder
title Human robot interaction based on wearable IMU sensor and laser range finder
spellingShingle Human robot interaction based on wearable IMU sensor and laser range finder
Cifuentes, Carlos
Human-Robot Interaction
Imu Sensor
Laser Range Finder
Human Tracking
title_short Human robot interaction based on wearable IMU sensor and laser range finder
title_full Human robot interaction based on wearable IMU sensor and laser range finder
title_fullStr Human robot interaction based on wearable IMU sensor and laser range finder
title_full_unstemmed Human robot interaction based on wearable IMU sensor and laser range finder
title_sort Human robot interaction based on wearable IMU sensor and laser range finder
dc.creator.none.fl_str_mv Cifuentes, Carlos
Freire Bastos, Teodiano
Carelli Albarracin, Ricardo Oscar
Frizera Neto, Anselmo
author Cifuentes, Carlos
author_facet Cifuentes, Carlos
Freire Bastos, Teodiano
Carelli Albarracin, Ricardo Oscar
Frizera Neto, Anselmo
author_role author
author2 Freire Bastos, Teodiano
Carelli Albarracin, Ricardo Oscar
Frizera Neto, Anselmo
author2_role author
author
author
dc.subject.none.fl_str_mv Human-Robot Interaction
Imu Sensor
Laser Range Finder
Human Tracking
topic Human-Robot Interaction
Imu Sensor
Laser Range Finder
Human Tracking
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Service robots are not only expected to navigate within the environment, as they also will may with people. Human tracking by mobile robots is essential for service robots and human interaction applications. In this work, the goal is to add a more natural robot–human following in front based on the normal human gait model. This approach proposes implementing and evaluating a human–robot interaction strategy, using the integration of a LRF (Laser Range Finder) tracking of human legs with wearable IMU (Inertial Measurement Unit) sensors for capturing the human movement during the gait. The work was carried out in four stages: first, the definition of the model of human–robot interaction and the control proposal were developed. Second, the parameters based on the human gait were estimated. Third, the robot and sensor integration setup are also proposed. Finally, the description of the algorithm for parameters detection is presented. In the experimental study, despite of the continuous oscillation during the walking, the parameters estimation was precise and unbiased, showing also repeatability with human linear velocities changes. The controller was evaluated with an eight-shaped curve, showing the stability of the controller even with sharp changes in the human path during real experiments.
Fil: Cifuentes, Carlos. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; Brasil
Fil: Freire Bastos, Teodiano. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; Brasil
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina
Fil: Frizera Neto, Anselmo. Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; Brasil
description Service robots are not only expected to navigate within the environment, as they also will may with people. Human tracking by mobile robots is essential for service robots and human interaction applications. In this work, the goal is to add a more natural robot–human following in front based on the normal human gait model. This approach proposes implementing and evaluating a human–robot interaction strategy, using the integration of a LRF (Laser Range Finder) tracking of human legs with wearable IMU (Inertial Measurement Unit) sensors for capturing the human movement during the gait. The work was carried out in four stages: first, the definition of the model of human–robot interaction and the control proposal were developed. Second, the parameters based on the human gait were estimated. Third, the robot and sensor integration setup are also proposed. Finally, the description of the algorithm for parameters detection is presented. In the experimental study, despite of the continuous oscillation during the walking, the parameters estimation was precise and unbiased, showing also repeatability with human linear velocities changes. The controller was evaluated with an eight-shaped curve, showing the stability of the controller even with sharp changes in the human path during real experiments.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5002
Cifuentes, Carlos; Freire Bastos, Teodiano; Carelli Albarracin, Ricardo Oscar; Frizera Neto, Anselmo; Human robot interaction based on wearable IMU sensor and laser range finder; Elsevier; Robotics And Autonomous Systems; 62; 6-2014; 1425-1439
0921-8890
url http://hdl.handle.net/11336/5002
identifier_str_mv Cifuentes, Carlos; Freire Bastos, Teodiano; Carelli Albarracin, Ricardo Oscar; Frizera Neto, Anselmo; Human robot interaction based on wearable IMU sensor and laser range finder; Elsevier; Robotics And Autonomous Systems; 62; 6-2014; 1425-1439
0921-8890
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0921889014001122
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2014.06.001
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269968958226432
score 13.13397