Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet

Autores
Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied.
Fil: Zoppetti, Federico Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Folonier, Hugo A.. Universidade de Sao Paulo; Brasil
Fil: Leiva, Alejandro Martín. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Materia
Exoplanetas
Evolución por mareas
Modelo analítico
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170292

id CONICETDig_d7949429c49508feed11113e2cff508d
oai_identifier_str oai:ri.conicet.gov.ar:11336/170292
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Creep tide model for the three-body problem: The rotational evolution of a circumbinary planetZoppetti, Federico AndrésFolonier, Hugo A.Leiva, Alejandro MartínBeauge, CristianExoplanetasEvolución por mareasModelo analíticohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied.Fil: Zoppetti, Federico Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Folonier, Hugo A.. Universidade de Sao Paulo; BrasilFil: Leiva, Alejandro Martín. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaEDP Sciences2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170292Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian; Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet; EDP Sciences; Astronomy and Astrophysics; 651; A49; 7-2021; 1-130004-63611432-0746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2021/07/aa40957-21/aa40957-21.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202140957info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:45:31Zoai:ri.conicet.gov.ar:11336/170292instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:45:32.054CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
title Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
spellingShingle Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
Zoppetti, Federico Andrés
Exoplanetas
Evolución por mareas
Modelo analítico
title_short Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
title_full Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
title_fullStr Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
title_full_unstemmed Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
title_sort Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
dc.creator.none.fl_str_mv Zoppetti, Federico Andrés
Folonier, Hugo A.
Leiva, Alejandro Martín
Beauge, Cristian
author Zoppetti, Federico Andrés
author_facet Zoppetti, Federico Andrés
Folonier, Hugo A.
Leiva, Alejandro Martín
Beauge, Cristian
author_role author
author2 Folonier, Hugo A.
Leiva, Alejandro Martín
Beauge, Cristian
author2_role author
author
author
dc.subject.none.fl_str_mv Exoplanetas
Evolución por mareas
Modelo analítico
topic Exoplanetas
Evolución por mareas
Modelo analítico
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied.
Fil: Zoppetti, Federico Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Folonier, Hugo A.. Universidade de Sao Paulo; Brasil
Fil: Leiva, Alejandro Martín. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
description We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170292
Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian; Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet; EDP Sciences; Astronomy and Astrophysics; 651; A49; 7-2021; 1-13
0004-6361
1432-0746
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170292
identifier_str_mv Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian; Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet; EDP Sciences; Astronomy and Astrophysics; 651; A49; 7-2021; 1-13
0004-6361
1432-0746
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2021/07/aa40957-21/aa40957-21.html
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202140957
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854322043229569024
score 12.603104