Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet
- Autores
- Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied.
Fil: Zoppetti, Federico Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Folonier, Hugo A.. Universidade de Sao Paulo; Brasil
Fil: Leiva, Alejandro Martín. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina - Materia
-
Exoplanetas
Evolución por mareas
Modelo analítico - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/170292
Ver los metadatos del registro completo
| id |
CONICETDig_d7949429c49508feed11113e2cff508d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/170292 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planetZoppetti, Federico AndrésFolonier, Hugo A.Leiva, Alejandro MartínBeauge, CristianExoplanetasEvolución por mareasModelo analíticohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied.Fil: Zoppetti, Federico Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Folonier, Hugo A.. Universidade de Sao Paulo; BrasilFil: Leiva, Alejandro Martín. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaEDP Sciences2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170292Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian; Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet; EDP Sciences; Astronomy and Astrophysics; 651; A49; 7-2021; 1-130004-63611432-0746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2021/07/aa40957-21/aa40957-21.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202140957info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:45:31Zoai:ri.conicet.gov.ar:11336/170292instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:45:32.054CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet |
| title |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet |
| spellingShingle |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet Zoppetti, Federico Andrés Exoplanetas Evolución por mareas Modelo analítico |
| title_short |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet |
| title_full |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet |
| title_fullStr |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet |
| title_full_unstemmed |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet |
| title_sort |
Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet |
| dc.creator.none.fl_str_mv |
Zoppetti, Federico Andrés Folonier, Hugo A. Leiva, Alejandro Martín Beauge, Cristian |
| author |
Zoppetti, Federico Andrés |
| author_facet |
Zoppetti, Federico Andrés Folonier, Hugo A. Leiva, Alejandro Martín Beauge, Cristian |
| author_role |
author |
| author2 |
Folonier, Hugo A. Leiva, Alejandro Martín Beauge, Cristian |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Exoplanetas Evolución por mareas Modelo analítico |
| topic |
Exoplanetas Evolución por mareas Modelo analítico |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied. Fil: Zoppetti, Federico Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina Fil: Folonier, Hugo A.. Universidade de Sao Paulo; Brasil Fil: Leiva, Alejandro Martín. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina |
| description |
We present a tidal model for treating the rotational evolution in the general three-body problem with arbitrary viscosities, in which all the masses are considered to be extended and all the tidal interactions between pairs are taken into account. Based on the creep tide theory, we present a set of differential equations that describes the rotational evolution of each body, in a formalism that is easily extensible to the N tidally interacting body problem. We apply our model to the case of a circumbinary planet and use a Kepler-38 like binary system as a working example. We find that, in this low planetary eccentricity case, the most likely final stationary rotation state is the 1:1 spin-orbit resonance, considering an arbitrary planetary viscosity inside the estimated range for the Solar System planets. The timescales for reaching the equilibrium state are expected to be approximately millions of years for stiff bodies but can be longer than the age of the system for planets with a large gaseous component. We derive analytical expressions for the mean rotational stationary state, based on high-order power series of the ratio of the semimajor axes a1 a2 and low-order expansions of the eccentricities. These are found to very accurately reproduce the mean behaviour of the low-eccentric numerical integrations for arbitrary planetary relaxation factors, and up to a1 a2 ~ 0.4. Our analytical model is used to predict the stationary rotation of the Kepler circumbinary planets and we find that most of them are probably rotating in a subsynchronous state, although the synchrony shift is much less important than our previous estimations. We present a comparison of our results with those obtained with the Constant Time Lag and find that, as opposed to the assumptions in our previous works, the cross torques have a non-negligible net secular contribution, and must be taken into account when computing the tides over each body in an N-extended-body system from an arbitrary reference frame. These torques are naturally taken into account in the creep theory. In addition to this, the latter formalism considers more realistic rheology that proved to reduce to the Constant Time Lag model in the gaseous limit and also allows several additional relevant physical phenomena to be studied. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/170292 Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian; Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet; EDP Sciences; Astronomy and Astrophysics; 651; A49; 7-2021; 1-13 0004-6361 1432-0746 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/170292 |
| identifier_str_mv |
Zoppetti, Federico Andrés; Folonier, Hugo A.; Leiva, Alejandro Martín; Beauge, Cristian; Creep tide model for the three-body problem: The rotational evolution of a circumbinary planet; EDP Sciences; Astronomy and Astrophysics; 651; A49; 7-2021; 1-13 0004-6361 1432-0746 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2021/07/aa40957-21/aa40957-21.html info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202140957 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
EDP Sciences |
| publisher.none.fl_str_mv |
EDP Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1854322043229569024 |
| score |
12.603104 |