25 Years of Self-Organized Criticality: Solar and Astrophysics

Autores
Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; McAteer, James; Milovanov, Alexander V.; Mineshige, Shin; Morales, Laura Fernanda; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, A. Surja; Strugarek, Antoine; Uritsky, Vadim
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.
Fil: Aschwanden, Markus J.. Lockheed Martin Corporation; Estados Unidos
Fil: Crosby, Norma B.. Belgian Institute For Space Aeronomy; Bélgica
Fil: Dimitropoulou, Michaila. University Of Athens; Grecia
Fil: Georgoulis, Manolis K.. Academy Of Athens; Grecia
Fil: Hergarten, Stefan. Universitat Freiburg Im Breisgau; Alemania
Fil: McAteer, James. University Of New Mexico; Estados Unidos
Fil: Milovanov, Alexander V.. Max Planck Institute For The Physics Of Complex Systems; Alemania. Russian Academy Of Sciences. Space Research Institute; Rusia. Enea Centro Ricerche Frascati; Italia
Fil: Mineshige, Shin. Kyoto University; Japón
Fil: Morales, Laura Fernanda. Canadian Space Agency; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nishizuka, Naoto. Japan National Institute Of Information And Communications Technology; Japón
Fil: Pruessner, Gunnar. Imperial College London; Reino Unido
Fil: Sanchez, Raul. Universidad Carlos Iii de Madrid. Instituto de Salud; España
Fil: Sharma, A. Surja. University Of Maryland; Estados Unidos
Fil: Strugarek, Antoine. University Of Montreal; Canadá
Fil: Uritsky, Vadim. Nasa Goddard Space Flight Center; Estados Unidos
Materia
COSMIC RAYS
INSTABILITIES
METHODS: STATISTICAL
PLANETS AND SATELLITES: RINGS
STARS: FLARE
SUN: FLARE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17486

id CONICETDig_d77c5e9c8d537604b407400b7c1e9d63
oai_identifier_str oai:ri.conicet.gov.ar:11336/17486
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling 25 Years of Self-Organized Criticality: Solar and AstrophysicsAschwanden, Markus J.Crosby, Norma B.Dimitropoulou, MichailaGeorgoulis, Manolis K.Hergarten, StefanMcAteer, JamesMilovanov, Alexander V.Mineshige, ShinMorales, Laura FernandaNishizuka, NaotoPruessner, GunnarSanchez, RaulSharma, A. SurjaStrugarek, AntoineUritsky, VadimCOSMIC RAYSINSTABILITIESMETHODS: STATISTICALPLANETS AND SATELLITES: RINGSSTARS: FLARESUN: FLAREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.Fil: Aschwanden, Markus J.. Lockheed Martin Corporation; Estados UnidosFil: Crosby, Norma B.. Belgian Institute For Space Aeronomy; BélgicaFil: Dimitropoulou, Michaila. University Of Athens; GreciaFil: Georgoulis, Manolis K.. Academy Of Athens; GreciaFil: Hergarten, Stefan. Universitat Freiburg Im Breisgau; AlemaniaFil: McAteer, James. University Of New Mexico; Estados UnidosFil: Milovanov, Alexander V.. Max Planck Institute For The Physics Of Complex Systems; Alemania. Russian Academy Of Sciences. Space Research Institute; Rusia. Enea Centro Ricerche Frascati; ItaliaFil: Mineshige, Shin. Kyoto University; JapónFil: Morales, Laura Fernanda. Canadian Space Agency; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nishizuka, Naoto. Japan National Institute Of Information And Communications Technology; JapónFil: Pruessner, Gunnar. Imperial College London; Reino UnidoFil: Sanchez, Raul. Universidad Carlos Iii de Madrid. Instituto de Salud; EspañaFil: Sharma, A. Surja. University Of Maryland; Estados UnidosFil: Strugarek, Antoine. University Of Montreal; CanadáFil: Uritsky, Vadim. Nasa Goddard Space Flight Center; Estados UnidosSpringer2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17486Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; et al.; 25 Years of Self-Organized Criticality: Solar and Astrophysics; Springer; Space Science Reviews; 198; 1; 1-2016; 47-1660038-6308enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11214-014-0054-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s11214-014-0054-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:47Zoai:ri.conicet.gov.ar:11336/17486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:47.836CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv 25 Years of Self-Organized Criticality: Solar and Astrophysics
title 25 Years of Self-Organized Criticality: Solar and Astrophysics
spellingShingle 25 Years of Self-Organized Criticality: Solar and Astrophysics
Aschwanden, Markus J.
COSMIC RAYS
INSTABILITIES
METHODS: STATISTICAL
PLANETS AND SATELLITES: RINGS
STARS: FLARE
SUN: FLARE
title_short 25 Years of Self-Organized Criticality: Solar and Astrophysics
title_full 25 Years of Self-Organized Criticality: Solar and Astrophysics
title_fullStr 25 Years of Self-Organized Criticality: Solar and Astrophysics
title_full_unstemmed 25 Years of Self-Organized Criticality: Solar and Astrophysics
title_sort 25 Years of Self-Organized Criticality: Solar and Astrophysics
dc.creator.none.fl_str_mv Aschwanden, Markus J.
Crosby, Norma B.
Dimitropoulou, Michaila
Georgoulis, Manolis K.
Hergarten, Stefan
McAteer, James
Milovanov, Alexander V.
Mineshige, Shin
Morales, Laura Fernanda
Nishizuka, Naoto
Pruessner, Gunnar
Sanchez, Raul
Sharma, A. Surja
Strugarek, Antoine
Uritsky, Vadim
author Aschwanden, Markus J.
author_facet Aschwanden, Markus J.
Crosby, Norma B.
Dimitropoulou, Michaila
Georgoulis, Manolis K.
Hergarten, Stefan
McAteer, James
Milovanov, Alexander V.
Mineshige, Shin
Morales, Laura Fernanda
Nishizuka, Naoto
Pruessner, Gunnar
Sanchez, Raul
Sharma, A. Surja
Strugarek, Antoine
Uritsky, Vadim
author_role author
author2 Crosby, Norma B.
Dimitropoulou, Michaila
Georgoulis, Manolis K.
Hergarten, Stefan
McAteer, James
Milovanov, Alexander V.
Mineshige, Shin
Morales, Laura Fernanda
Nishizuka, Naoto
Pruessner, Gunnar
Sanchez, Raul
Sharma, A. Surja
Strugarek, Antoine
Uritsky, Vadim
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv COSMIC RAYS
INSTABILITIES
METHODS: STATISTICAL
PLANETS AND SATELLITES: RINGS
STARS: FLARE
SUN: FLARE
topic COSMIC RAYS
INSTABILITIES
METHODS: STATISTICAL
PLANETS AND SATELLITES: RINGS
STARS: FLARE
SUN: FLARE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.
Fil: Aschwanden, Markus J.. Lockheed Martin Corporation; Estados Unidos
Fil: Crosby, Norma B.. Belgian Institute For Space Aeronomy; Bélgica
Fil: Dimitropoulou, Michaila. University Of Athens; Grecia
Fil: Georgoulis, Manolis K.. Academy Of Athens; Grecia
Fil: Hergarten, Stefan. Universitat Freiburg Im Breisgau; Alemania
Fil: McAteer, James. University Of New Mexico; Estados Unidos
Fil: Milovanov, Alexander V.. Max Planck Institute For The Physics Of Complex Systems; Alemania. Russian Academy Of Sciences. Space Research Institute; Rusia. Enea Centro Ricerche Frascati; Italia
Fil: Mineshige, Shin. Kyoto University; Japón
Fil: Morales, Laura Fernanda. Canadian Space Agency; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nishizuka, Naoto. Japan National Institute Of Information And Communications Technology; Japón
Fil: Pruessner, Gunnar. Imperial College London; Reino Unido
Fil: Sanchez, Raul. Universidad Carlos Iii de Madrid. Instituto de Salud; España
Fil: Sharma, A. Surja. University Of Maryland; Estados Unidos
Fil: Strugarek, Antoine. University Of Montreal; Canadá
Fil: Uritsky, Vadim. Nasa Goddard Space Flight Center; Estados Unidos
description Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17486
Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; et al.; 25 Years of Self-Organized Criticality: Solar and Astrophysics; Springer; Space Science Reviews; 198; 1; 1-2016; 47-166
0038-6308
url http://hdl.handle.net/11336/17486
identifier_str_mv Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; et al.; 25 Years of Self-Organized Criticality: Solar and Astrophysics; Springer; Space Science Reviews; 198; 1; 1-2016; 47-166
0038-6308
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11214-014-0054-6
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11214-014-0054-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613317618827264
score 13.070432