25 Years of Self-Organized Criticality: Solar and Astrophysics
- Autores
- Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; McAteer, James; Milovanov, Alexander V.; Mineshige, Shin; Morales, Laura Fernanda; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, A. Surja; Strugarek, Antoine; Uritsky, Vadim
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.
Fil: Aschwanden, Markus J.. Lockheed Martin Corporation; Estados Unidos
Fil: Crosby, Norma B.. Belgian Institute For Space Aeronomy; Bélgica
Fil: Dimitropoulou, Michaila. University Of Athens; Grecia
Fil: Georgoulis, Manolis K.. Academy Of Athens; Grecia
Fil: Hergarten, Stefan. Universitat Freiburg Im Breisgau; Alemania
Fil: McAteer, James. University Of New Mexico; Estados Unidos
Fil: Milovanov, Alexander V.. Max Planck Institute For The Physics Of Complex Systems; Alemania. Russian Academy Of Sciences. Space Research Institute; Rusia. Enea Centro Ricerche Frascati; Italia
Fil: Mineshige, Shin. Kyoto University; Japón
Fil: Morales, Laura Fernanda. Canadian Space Agency; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nishizuka, Naoto. Japan National Institute Of Information And Communications Technology; Japón
Fil: Pruessner, Gunnar. Imperial College London; Reino Unido
Fil: Sanchez, Raul. Universidad Carlos Iii de Madrid. Instituto de Salud; España
Fil: Sharma, A. Surja. University Of Maryland; Estados Unidos
Fil: Strugarek, Antoine. University Of Montreal; Canadá
Fil: Uritsky, Vadim. Nasa Goddard Space Flight Center; Estados Unidos - Materia
-
COSMIC RAYS
INSTABILITIES
METHODS: STATISTICAL
PLANETS AND SATELLITES: RINGS
STARS: FLARE
SUN: FLARE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17486
Ver los metadatos del registro completo
id |
CONICETDig_d77c5e9c8d537604b407400b7c1e9d63 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17486 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
25 Years of Self-Organized Criticality: Solar and AstrophysicsAschwanden, Markus J.Crosby, Norma B.Dimitropoulou, MichailaGeorgoulis, Manolis K.Hergarten, StefanMcAteer, JamesMilovanov, Alexander V.Mineshige, ShinMorales, Laura FernandaNishizuka, NaotoPruessner, GunnarSanchez, RaulSharma, A. SurjaStrugarek, AntoineUritsky, VadimCOSMIC RAYSINSTABILITIESMETHODS: STATISTICALPLANETS AND SATELLITES: RINGSSTARS: FLARESUN: FLAREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.Fil: Aschwanden, Markus J.. Lockheed Martin Corporation; Estados UnidosFil: Crosby, Norma B.. Belgian Institute For Space Aeronomy; BélgicaFil: Dimitropoulou, Michaila. University Of Athens; GreciaFil: Georgoulis, Manolis K.. Academy Of Athens; GreciaFil: Hergarten, Stefan. Universitat Freiburg Im Breisgau; AlemaniaFil: McAteer, James. University Of New Mexico; Estados UnidosFil: Milovanov, Alexander V.. Max Planck Institute For The Physics Of Complex Systems; Alemania. Russian Academy Of Sciences. Space Research Institute; Rusia. Enea Centro Ricerche Frascati; ItaliaFil: Mineshige, Shin. Kyoto University; JapónFil: Morales, Laura Fernanda. Canadian Space Agency; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nishizuka, Naoto. Japan National Institute Of Information And Communications Technology; JapónFil: Pruessner, Gunnar. Imperial College London; Reino UnidoFil: Sanchez, Raul. Universidad Carlos Iii de Madrid. Instituto de Salud; EspañaFil: Sharma, A. Surja. University Of Maryland; Estados UnidosFil: Strugarek, Antoine. University Of Montreal; CanadáFil: Uritsky, Vadim. Nasa Goddard Space Flight Center; Estados UnidosSpringer2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17486Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; et al.; 25 Years of Self-Organized Criticality: Solar and Astrophysics; Springer; Space Science Reviews; 198; 1; 1-2016; 47-1660038-6308enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11214-014-0054-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s11214-014-0054-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:47Zoai:ri.conicet.gov.ar:11336/17486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:47.836CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
25 Years of Self-Organized Criticality: Solar and Astrophysics |
title |
25 Years of Self-Organized Criticality: Solar and Astrophysics |
spellingShingle |
25 Years of Self-Organized Criticality: Solar and Astrophysics Aschwanden, Markus J. COSMIC RAYS INSTABILITIES METHODS: STATISTICAL PLANETS AND SATELLITES: RINGS STARS: FLARE SUN: FLARE |
title_short |
25 Years of Self-Organized Criticality: Solar and Astrophysics |
title_full |
25 Years of Self-Organized Criticality: Solar and Astrophysics |
title_fullStr |
25 Years of Self-Organized Criticality: Solar and Astrophysics |
title_full_unstemmed |
25 Years of Self-Organized Criticality: Solar and Astrophysics |
title_sort |
25 Years of Self-Organized Criticality: Solar and Astrophysics |
dc.creator.none.fl_str_mv |
Aschwanden, Markus J. Crosby, Norma B. Dimitropoulou, Michaila Georgoulis, Manolis K. Hergarten, Stefan McAteer, James Milovanov, Alexander V. Mineshige, Shin Morales, Laura Fernanda Nishizuka, Naoto Pruessner, Gunnar Sanchez, Raul Sharma, A. Surja Strugarek, Antoine Uritsky, Vadim |
author |
Aschwanden, Markus J. |
author_facet |
Aschwanden, Markus J. Crosby, Norma B. Dimitropoulou, Michaila Georgoulis, Manolis K. Hergarten, Stefan McAteer, James Milovanov, Alexander V. Mineshige, Shin Morales, Laura Fernanda Nishizuka, Naoto Pruessner, Gunnar Sanchez, Raul Sharma, A. Surja Strugarek, Antoine Uritsky, Vadim |
author_role |
author |
author2 |
Crosby, Norma B. Dimitropoulou, Michaila Georgoulis, Manolis K. Hergarten, Stefan McAteer, James Milovanov, Alexander V. Mineshige, Shin Morales, Laura Fernanda Nishizuka, Naoto Pruessner, Gunnar Sanchez, Raul Sharma, A. Surja Strugarek, Antoine Uritsky, Vadim |
author2_role |
author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
COSMIC RAYS INSTABILITIES METHODS: STATISTICAL PLANETS AND SATELLITES: RINGS STARS: FLARE SUN: FLARE |
topic |
COSMIC RAYS INSTABILITIES METHODS: STATISTICAL PLANETS AND SATELLITES: RINGS STARS: FLARE SUN: FLARE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme. Fil: Aschwanden, Markus J.. Lockheed Martin Corporation; Estados Unidos Fil: Crosby, Norma B.. Belgian Institute For Space Aeronomy; Bélgica Fil: Dimitropoulou, Michaila. University Of Athens; Grecia Fil: Georgoulis, Manolis K.. Academy Of Athens; Grecia Fil: Hergarten, Stefan. Universitat Freiburg Im Breisgau; Alemania Fil: McAteer, James. University Of New Mexico; Estados Unidos Fil: Milovanov, Alexander V.. Max Planck Institute For The Physics Of Complex Systems; Alemania. Russian Academy Of Sciences. Space Research Institute; Rusia. Enea Centro Ricerche Frascati; Italia Fil: Mineshige, Shin. Kyoto University; Japón Fil: Morales, Laura Fernanda. Canadian Space Agency; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Nishizuka, Naoto. Japan National Institute Of Information And Communications Technology; Japón Fil: Pruessner, Gunnar. Imperial College London; Reino Unido Fil: Sanchez, Raul. Universidad Carlos Iii de Madrid. Instituto de Salud; España Fil: Sharma, A. Surja. University Of Maryland; Estados Unidos Fil: Strugarek, Antoine. University Of Montreal; Canadá Fil: Uritsky, Vadim. Nasa Goddard Space Flight Center; Estados Unidos |
description |
Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17486 Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; et al.; 25 Years of Self-Organized Criticality: Solar and Astrophysics; Springer; Space Science Reviews; 198; 1; 1-2016; 47-166 0038-6308 |
url |
http://hdl.handle.net/11336/17486 |
identifier_str_mv |
Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; et al.; 25 Years of Self-Organized Criticality: Solar and Astrophysics; Springer; Space Science Reviews; 198; 1; 1-2016; 47-166 0038-6308 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11214-014-0054-6 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11214-014-0054-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613317618827264 |
score |
13.070432 |