Dynamical malaria models reveal how immunity buffers effect of climate variability

Autores
Laneri, Karina Fabiana; Paul, Richard E.; Tall, Adama; Faye, Joseph; Diene Sarr, Fatoumata; Sokhna, Cheikh; Trape, Jean François; Rodó, Xavier
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity.
Fil: Laneri, Karina Fabiana. Institut Catala de Ciencies del Clima; España. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Paul, Richard E.. Institut Pasteur de Paris.; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Tall, Adama. Institut Pasteur de Dakar; Senegal
Fil: Faye, Joseph. Institut Pasteur de Dakar; Senegal
Fil: Diene Sarr, Fatoumata. Institut Pasteur de Dakar; Senegal
Fil: Sokhna, Cheikh. Institut de Recherche Pour Le Developement; Senegal
Fil: Trape, Jean François. Institut de Recherche Pour Le Developement; Senegal
Fil: Rodó, Xavier. Institut Catala de Ciencies del Clima; España. Institució Catalana de Recerca i Estudis Avancats; España
Materia
CLIMATE
ENDEMICITY
IMMUNITY
PLASMODIUM FALCIPARUM MALARIA
VECTOR-BORNE DISEASES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/127102

id CONICETDig_d6ce60f3054eeab2ecbad59606cbec35
oai_identifier_str oai:ri.conicet.gov.ar:11336/127102
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamical malaria models reveal how immunity buffers effect of climate variabilityLaneri, Karina FabianaPaul, Richard E.Tall, AdamaFaye, JosephDiene Sarr, FatoumataSokhna, CheikhTrape, Jean FrançoisRodó, XavierCLIMATEENDEMICITYIMMUNITYPLASMODIUM FALCIPARUM MALARIAVECTOR-BORNE DISEASEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity.Fil: Laneri, Karina Fabiana. Institut Catala de Ciencies del Clima; España. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Paul, Richard E.. Institut Pasteur de Paris.; Francia. Centre National de la Recherche Scientifique; FranciaFil: Tall, Adama. Institut Pasteur de Dakar; SenegalFil: Faye, Joseph. Institut Pasteur de Dakar; SenegalFil: Diene Sarr, Fatoumata. Institut Pasteur de Dakar; SenegalFil: Sokhna, Cheikh. Institut de Recherche Pour Le Developement; SenegalFil: Trape, Jean François. Institut de Recherche Pour Le Developement; SenegalFil: Rodó, Xavier. Institut Catala de Ciencies del Clima; España. Institució Catalana de Recerca i Estudis Avancats; EspañaNational Academy of Sciences2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127102Laneri, Karina Fabiana; Paul, Richard E.; Tall, Adama; Faye, Joseph; Diene Sarr, Fatoumata; et al.; Dynamical malaria models reveal how immunity buffers effect of climate variability; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 112; 28; 6-2015; 8786-87910027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1073/pnas.1419047112info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/112/28/8786info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:38Zoai:ri.conicet.gov.ar:11336/127102instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:38.821CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamical malaria models reveal how immunity buffers effect of climate variability
title Dynamical malaria models reveal how immunity buffers effect of climate variability
spellingShingle Dynamical malaria models reveal how immunity buffers effect of climate variability
Laneri, Karina Fabiana
CLIMATE
ENDEMICITY
IMMUNITY
PLASMODIUM FALCIPARUM MALARIA
VECTOR-BORNE DISEASES
title_short Dynamical malaria models reveal how immunity buffers effect of climate variability
title_full Dynamical malaria models reveal how immunity buffers effect of climate variability
title_fullStr Dynamical malaria models reveal how immunity buffers effect of climate variability
title_full_unstemmed Dynamical malaria models reveal how immunity buffers effect of climate variability
title_sort Dynamical malaria models reveal how immunity buffers effect of climate variability
dc.creator.none.fl_str_mv Laneri, Karina Fabiana
Paul, Richard E.
Tall, Adama
Faye, Joseph
Diene Sarr, Fatoumata
Sokhna, Cheikh
Trape, Jean François
Rodó, Xavier
author Laneri, Karina Fabiana
author_facet Laneri, Karina Fabiana
Paul, Richard E.
Tall, Adama
Faye, Joseph
Diene Sarr, Fatoumata
Sokhna, Cheikh
Trape, Jean François
Rodó, Xavier
author_role author
author2 Paul, Richard E.
Tall, Adama
Faye, Joseph
Diene Sarr, Fatoumata
Sokhna, Cheikh
Trape, Jean François
Rodó, Xavier
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CLIMATE
ENDEMICITY
IMMUNITY
PLASMODIUM FALCIPARUM MALARIA
VECTOR-BORNE DISEASES
topic CLIMATE
ENDEMICITY
IMMUNITY
PLASMODIUM FALCIPARUM MALARIA
VECTOR-BORNE DISEASES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity.
Fil: Laneri, Karina Fabiana. Institut Catala de Ciencies del Clima; España. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Paul, Richard E.. Institut Pasteur de Paris.; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Tall, Adama. Institut Pasteur de Dakar; Senegal
Fil: Faye, Joseph. Institut Pasteur de Dakar; Senegal
Fil: Diene Sarr, Fatoumata. Institut Pasteur de Dakar; Senegal
Fil: Sokhna, Cheikh. Institut de Recherche Pour Le Developement; Senegal
Fil: Trape, Jean François. Institut de Recherche Pour Le Developement; Senegal
Fil: Rodó, Xavier. Institut Catala de Ciencies del Clima; España. Institució Catalana de Recerca i Estudis Avancats; España
description Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/127102
Laneri, Karina Fabiana; Paul, Richard E.; Tall, Adama; Faye, Joseph; Diene Sarr, Fatoumata; et al.; Dynamical malaria models reveal how immunity buffers effect of climate variability; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 112; 28; 6-2015; 8786-8791
0027-8424
CONICET Digital
CONICET
url http://hdl.handle.net/11336/127102
identifier_str_mv Laneri, Karina Fabiana; Paul, Richard E.; Tall, Adama; Faye, Joseph; Diene Sarr, Fatoumata; et al.; Dynamical malaria models reveal how immunity buffers effect of climate variability; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 112; 28; 6-2015; 8786-8791
0027-8424
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/ 10.1073/pnas.1419047112
info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/112/28/8786
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083534121336832
score 13.22299