Electronic heat transport versus atomic heating in irradiated short metallic nanowires

Autores
Grossi, Joás Santiago; Kohanoff, Jorge Jose; Todorov, T. N.; Artacho, Emilio; Bringa, Eduardo Marcial
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The twoerature model (TTM) is commonly used to represent the energy exchange between atoms and electrons in materials under irradiation. In this work we use the TTM coupled to molecular dynamics (TTM-MD) to study swift heavy ion irradiation of Au and W finite nanowires. While no permanent structural modifications are observed in bulk, nanowires behave in a different way depending on thermal conductivity and the electron-phonon coupling parameter. Au is a good heat conductor and it does not transfer energy from electrons to phonons too efficiently. Therefore, energy is quickly carried away from the track so that both electronic and lattice temperatures remain quite uniform across the sample at all times. W has a lower thermal conductivity and a larger electron-phonon coupling, thus supporting an inhomogeneous lattice temperature profile with temperatures well above melting lasting several picoseconds in the irradiated region. Both W and Au nanowires display radiation-induced surface roughening. However, in the case of W there is also sputtering and the formation of a hole in the central part of the wire, purely due to the energy transferred to the atoms by the electrons. The physical mechanisms underlying these findings are rationalized in terms of a combination of sputtering, vacancy formation, and melt flow phenomena. The role of the electron-phonon coupling parameter g is analyzed.
Fil: Grossi, Joás Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Kohanoff, Jorge Jose. The Queens University of Belfast; Irlanda
Fil: Todorov, T. N.. The Queens University of Belfast; Irlanda
Fil: Artacho, Emilio. University of Cambridge; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
NANOWIRES
ION IRRADIATION
DEFECTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/157458

id CONICETDig_d59d6e27bb3fd17a16952b5eef7dfd53
oai_identifier_str oai:ri.conicet.gov.ar:11336/157458
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electronic heat transport versus atomic heating in irradiated short metallic nanowiresGrossi, Joás SantiagoKohanoff, Jorge JoseTodorov, T. N.Artacho, EmilioBringa, Eduardo MarcialNANOWIRESION IRRADIATIONDEFECTShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The twoerature model (TTM) is commonly used to represent the energy exchange between atoms and electrons in materials under irradiation. In this work we use the TTM coupled to molecular dynamics (TTM-MD) to study swift heavy ion irradiation of Au and W finite nanowires. While no permanent structural modifications are observed in bulk, nanowires behave in a different way depending on thermal conductivity and the electron-phonon coupling parameter. Au is a good heat conductor and it does not transfer energy from electrons to phonons too efficiently. Therefore, energy is quickly carried away from the track so that both electronic and lattice temperatures remain quite uniform across the sample at all times. W has a lower thermal conductivity and a larger electron-phonon coupling, thus supporting an inhomogeneous lattice temperature profile with temperatures well above melting lasting several picoseconds in the irradiated region. Both W and Au nanowires display radiation-induced surface roughening. However, in the case of W there is also sputtering and the formation of a hole in the central part of the wire, purely due to the energy transferred to the atoms by the electrons. The physical mechanisms underlying these findings are rationalized in terms of a combination of sputtering, vacancy formation, and melt flow phenomena. The role of the electron-phonon coupling parameter g is analyzed.Fil: Grossi, Joás Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Kohanoff, Jorge Jose. The Queens University of Belfast; IrlandaFil: Todorov, T. N.. The Queens University of Belfast; IrlandaFil: Artacho, Emilio. University of Cambridge; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaAmerican Physical Society2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157458Grossi, Joás Santiago; Kohanoff, Jorge Jose; Todorov, T. N.; Artacho, Emilio; Bringa, Eduardo Marcial; Electronic heat transport versus atomic heating in irradiated short metallic nanowires; American Physical Society; Physical Review B; 100; 15; 10-2019; 1-152469-99502469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.100.155434info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.155434info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:12:23Zoai:ri.conicet.gov.ar:11336/157458instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:12:23.862CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electronic heat transport versus atomic heating in irradiated short metallic nanowires
title Electronic heat transport versus atomic heating in irradiated short metallic nanowires
spellingShingle Electronic heat transport versus atomic heating in irradiated short metallic nanowires
Grossi, Joás Santiago
NANOWIRES
ION IRRADIATION
DEFECTS
title_short Electronic heat transport versus atomic heating in irradiated short metallic nanowires
title_full Electronic heat transport versus atomic heating in irradiated short metallic nanowires
title_fullStr Electronic heat transport versus atomic heating in irradiated short metallic nanowires
title_full_unstemmed Electronic heat transport versus atomic heating in irradiated short metallic nanowires
title_sort Electronic heat transport versus atomic heating in irradiated short metallic nanowires
dc.creator.none.fl_str_mv Grossi, Joás Santiago
Kohanoff, Jorge Jose
Todorov, T. N.
Artacho, Emilio
Bringa, Eduardo Marcial
author Grossi, Joás Santiago
author_facet Grossi, Joás Santiago
Kohanoff, Jorge Jose
Todorov, T. N.
Artacho, Emilio
Bringa, Eduardo Marcial
author_role author
author2 Kohanoff, Jorge Jose
Todorov, T. N.
Artacho, Emilio
Bringa, Eduardo Marcial
author2_role author
author
author
author
dc.subject.none.fl_str_mv NANOWIRES
ION IRRADIATION
DEFECTS
topic NANOWIRES
ION IRRADIATION
DEFECTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The twoerature model (TTM) is commonly used to represent the energy exchange between atoms and electrons in materials under irradiation. In this work we use the TTM coupled to molecular dynamics (TTM-MD) to study swift heavy ion irradiation of Au and W finite nanowires. While no permanent structural modifications are observed in bulk, nanowires behave in a different way depending on thermal conductivity and the electron-phonon coupling parameter. Au is a good heat conductor and it does not transfer energy from electrons to phonons too efficiently. Therefore, energy is quickly carried away from the track so that both electronic and lattice temperatures remain quite uniform across the sample at all times. W has a lower thermal conductivity and a larger electron-phonon coupling, thus supporting an inhomogeneous lattice temperature profile with temperatures well above melting lasting several picoseconds in the irradiated region. Both W and Au nanowires display radiation-induced surface roughening. However, in the case of W there is also sputtering and the formation of a hole in the central part of the wire, purely due to the energy transferred to the atoms by the electrons. The physical mechanisms underlying these findings are rationalized in terms of a combination of sputtering, vacancy formation, and melt flow phenomena. The role of the electron-phonon coupling parameter g is analyzed.
Fil: Grossi, Joás Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Kohanoff, Jorge Jose. The Queens University of Belfast; Irlanda
Fil: Todorov, T. N.. The Queens University of Belfast; Irlanda
Fil: Artacho, Emilio. University of Cambridge; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description The twoerature model (TTM) is commonly used to represent the energy exchange between atoms and electrons in materials under irradiation. In this work we use the TTM coupled to molecular dynamics (TTM-MD) to study swift heavy ion irradiation of Au and W finite nanowires. While no permanent structural modifications are observed in bulk, nanowires behave in a different way depending on thermal conductivity and the electron-phonon coupling parameter. Au is a good heat conductor and it does not transfer energy from electrons to phonons too efficiently. Therefore, energy is quickly carried away from the track so that both electronic and lattice temperatures remain quite uniform across the sample at all times. W has a lower thermal conductivity and a larger electron-phonon coupling, thus supporting an inhomogeneous lattice temperature profile with temperatures well above melting lasting several picoseconds in the irradiated region. Both W and Au nanowires display radiation-induced surface roughening. However, in the case of W there is also sputtering and the formation of a hole in the central part of the wire, purely due to the energy transferred to the atoms by the electrons. The physical mechanisms underlying these findings are rationalized in terms of a combination of sputtering, vacancy formation, and melt flow phenomena. The role of the electron-phonon coupling parameter g is analyzed.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/157458
Grossi, Joás Santiago; Kohanoff, Jorge Jose; Todorov, T. N.; Artacho, Emilio; Bringa, Eduardo Marcial; Electronic heat transport versus atomic heating in irradiated short metallic nanowires; American Physical Society; Physical Review B; 100; 15; 10-2019; 1-15
2469-9950
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/157458
identifier_str_mv Grossi, Joás Santiago; Kohanoff, Jorge Jose; Todorov, T. N.; Artacho, Emilio; Bringa, Eduardo Marcial; Electronic heat transport versus atomic heating in irradiated short metallic nanowires; American Physical Society; Physical Review B; 100; 15; 10-2019; 1-15
2469-9950
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.100.155434
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.155434
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083271844167680
score 13.22299