Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials

Autores
Congost Escoin, Pau; Lucherelli, Matteo Andrea; Oestreicher, Víctor; García Lainez, Guillermo; Alcaraz, Marta; Mizrahi, Martin Daniel; Varela, Maria; Andreu, Inmaculada; Abellán, Gonzalo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pnictogen nanomaterials have recently attracted researchers’ attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK andHEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.
Fil: Congost Escoin, Pau. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: Lucherelli, Matteo Andrea. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: Oestreicher, Víctor. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: García Lainez, Guillermo. Hospital Universitari i Politècnic La Fe; España
Fil: Alcaraz, Marta. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: Mizrahi, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Varela, Maria. Universidad Complutense de Madrid; España
Fil: Andreu, Inmaculada. Universidad Politécnica de Valencia; España
Fil: Abellán, Gonzalo. Universidad de Valencia. Instituto de Ciencia Molecular.;
Materia
PNICTOGEN
Sb-NANOPARTICLES
CYTOTOXIC
XANES IN-SITU
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/262377

id CONICETDig_d53bbec774089bc1bd3085d8337bbced
oai_identifier_str oai:ri.conicet.gov.ar:11336/262377
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterialsCongost Escoin, PauLucherelli, Matteo AndreaOestreicher, VíctorGarcía Lainez, GuillermoAlcaraz, MartaMizrahi, Martin DanielVarela, MariaAndreu, InmaculadaAbellán, GonzaloPNICTOGENSb-NANOPARTICLESCYTOTOXICXANES IN-SITUhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Pnictogen nanomaterials have recently attracted researchers’ attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK andHEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.Fil: Congost Escoin, Pau. Universidad de Valencia. Instituto de Ciencia Molecular.;Fil: Lucherelli, Matteo Andrea. Universidad de Valencia. Instituto de Ciencia Molecular.;Fil: Oestreicher, Víctor. Universidad de Valencia. Instituto de Ciencia Molecular.;Fil: García Lainez, Guillermo. Hospital Universitari i Politècnic La Fe; EspañaFil: Alcaraz, Marta. Universidad de Valencia. Instituto de Ciencia Molecular.;Fil: Mizrahi, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Varela, Maria. Universidad Complutense de Madrid; EspañaFil: Andreu, Inmaculada. Universidad Politécnica de Valencia; EspañaFil: Abellán, Gonzalo. Universidad de Valencia. Instituto de Ciencia Molecular.;Royal Society of Chemistry2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262377Congost Escoin, Pau; Lucherelli, Matteo Andrea; Oestreicher, Víctor; García Lainez, Guillermo; Alcaraz, Marta; et al.; Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials; Royal Society of Chemistry; Nanoscale; 16; 20; 3-2024; 9754-97692040-33642040-3372CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4NR00532Einfo:eu-repo/semantics/altIdentifier/doi/10.1039/D4NR00532Einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:09Zoai:ri.conicet.gov.ar:11336/262377instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:10.226CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
title Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
spellingShingle Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
Congost Escoin, Pau
PNICTOGEN
Sb-NANOPARTICLES
CYTOTOXIC
XANES IN-SITU
title_short Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
title_full Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
title_fullStr Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
title_full_unstemmed Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
title_sort Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials
dc.creator.none.fl_str_mv Congost Escoin, Pau
Lucherelli, Matteo Andrea
Oestreicher, Víctor
García Lainez, Guillermo
Alcaraz, Marta
Mizrahi, Martin Daniel
Varela, Maria
Andreu, Inmaculada
Abellán, Gonzalo
author Congost Escoin, Pau
author_facet Congost Escoin, Pau
Lucherelli, Matteo Andrea
Oestreicher, Víctor
García Lainez, Guillermo
Alcaraz, Marta
Mizrahi, Martin Daniel
Varela, Maria
Andreu, Inmaculada
Abellán, Gonzalo
author_role author
author2 Lucherelli, Matteo Andrea
Oestreicher, Víctor
García Lainez, Guillermo
Alcaraz, Marta
Mizrahi, Martin Daniel
Varela, Maria
Andreu, Inmaculada
Abellán, Gonzalo
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv PNICTOGEN
Sb-NANOPARTICLES
CYTOTOXIC
XANES IN-SITU
topic PNICTOGEN
Sb-NANOPARTICLES
CYTOTOXIC
XANES IN-SITU
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Pnictogen nanomaterials have recently attracted researchers’ attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK andHEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.
Fil: Congost Escoin, Pau. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: Lucherelli, Matteo Andrea. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: Oestreicher, Víctor. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: García Lainez, Guillermo. Hospital Universitari i Politècnic La Fe; España
Fil: Alcaraz, Marta. Universidad de Valencia. Instituto de Ciencia Molecular.;
Fil: Mizrahi, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Varela, Maria. Universidad Complutense de Madrid; España
Fil: Andreu, Inmaculada. Universidad Politécnica de Valencia; España
Fil: Abellán, Gonzalo. Universidad de Valencia. Instituto de Ciencia Molecular.;
description Pnictogen nanomaterials have recently attracted researchers’ attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK andHEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/262377
Congost Escoin, Pau; Lucherelli, Matteo Andrea; Oestreicher, Víctor; García Lainez, Guillermo; Alcaraz, Marta; et al.; Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials; Royal Society of Chemistry; Nanoscale; 16; 20; 3-2024; 9754-9769
2040-3364
2040-3372
CONICET Digital
CONICET
url http://hdl.handle.net/11336/262377
identifier_str_mv Congost Escoin, Pau; Lucherelli, Matteo Andrea; Oestreicher, Víctor; García Lainez, Guillermo; Alcaraz, Marta; et al.; Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials; Royal Society of Chemistry; Nanoscale; 16; 20; 3-2024; 9754-9769
2040-3364
2040-3372
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4NR00532E
info:eu-repo/semantics/altIdentifier/doi/10.1039/D4NR00532E
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613093459492864
score 13.070432