Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes
- Autores
- Hadad, Hernán Ricardo; Maine, Maria Alejandra; Mufarrege, María de Las Mercedes; del Sastre, M. V.; Di Luca, Gisela Alfonsina
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this work was to assess the uptake efficiencies, the uptake and bioaccumulation kinetics and the toxic effects of Cr, Ni and Zn on Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes accumulated Cr, Ni and Zn efficiently.
Fil: Hadad, Hernán Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Maine, Maria Alejandra. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Mufarrege, María de Las Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina
Fil: del Sastre, M. V.. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina
Fil: Di Luca, Gisela Alfonsina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina - Materia
-
FREE-FLOATING MACROPHYTES
METALS
TOXICITY
UPTAKE EFFICIENCY
WETLANDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/160907
Ver los metadatos del registro completo
id |
CONICETDig_d535f7a82fd0ebb46d4ba3b1ab0f913a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/160907 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipesHadad, Hernán RicardoMaine, Maria AlejandraMufarrege, María de Las Mercedesdel Sastre, M. V.Di Luca, Gisela AlfonsinaFREE-FLOATING MACROPHYTESMETALSTOXICITYUPTAKE EFFICIENCYWETLANDShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The aim of this work was to assess the uptake efficiencies, the uptake and bioaccumulation kinetics and the toxic effects of Cr, Ni and Zn on Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes accumulated Cr, Ni and Zn efficiently.Fil: Hadad, Hernán Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Maine, Maria Alejandra. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Mufarrege, María de Las Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; ArgentinaFil: del Sastre, M. V.. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; ArgentinaFil: Di Luca, Gisela Alfonsina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; ArgentinaElsevier Science2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160907Hadad, Hernán Ricardo; Maine, Maria Alejandra; Mufarrege, María de Las Mercedes; del Sastre, M. V.; Di Luca, Gisela Alfonsina; Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes; Elsevier Science; Journal of Hazardous Materials; 190; 1-3; 6-2011; 1016-10220304-3894CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304389411004821info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhazmat.2011.04.044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:08Zoai:ri.conicet.gov.ar:11336/160907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:09.084CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes |
title |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes |
spellingShingle |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes Hadad, Hernán Ricardo FREE-FLOATING MACROPHYTES METALS TOXICITY UPTAKE EFFICIENCY WETLANDS |
title_short |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes |
title_full |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes |
title_fullStr |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes |
title_full_unstemmed |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes |
title_sort |
Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes |
dc.creator.none.fl_str_mv |
Hadad, Hernán Ricardo Maine, Maria Alejandra Mufarrege, María de Las Mercedes del Sastre, M. V. Di Luca, Gisela Alfonsina |
author |
Hadad, Hernán Ricardo |
author_facet |
Hadad, Hernán Ricardo Maine, Maria Alejandra Mufarrege, María de Las Mercedes del Sastre, M. V. Di Luca, Gisela Alfonsina |
author_role |
author |
author2 |
Maine, Maria Alejandra Mufarrege, María de Las Mercedes del Sastre, M. V. Di Luca, Gisela Alfonsina |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
FREE-FLOATING MACROPHYTES METALS TOXICITY UPTAKE EFFICIENCY WETLANDS |
topic |
FREE-FLOATING MACROPHYTES METALS TOXICITY UPTAKE EFFICIENCY WETLANDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this work was to assess the uptake efficiencies, the uptake and bioaccumulation kinetics and the toxic effects of Cr, Ni and Zn on Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes accumulated Cr, Ni and Zn efficiently. Fil: Hadad, Hernán Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Maine, Maria Alejandra. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Mufarrege, María de Las Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina Fil: del Sastre, M. V.. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina Fil: Di Luca, Gisela Alfonsina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Laboratorio de Química Analítica; Argentina |
description |
The aim of this work was to assess the uptake efficiencies, the uptake and bioaccumulation kinetics and the toxic effects of Cr, Ni and Zn on Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. Eichhornia crassipes. Plants were exposed to 1mg L−1 of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently. Zn efficiently. E. crassipes accumulated Cr, Ni and Zn efficiently. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/160907 Hadad, Hernán Ricardo; Maine, Maria Alejandra; Mufarrege, María de Las Mercedes; del Sastre, M. V.; Di Luca, Gisela Alfonsina; Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes; Elsevier Science; Journal of Hazardous Materials; 190; 1-3; 6-2011; 1016-1022 0304-3894 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/160907 |
identifier_str_mv |
Hadad, Hernán Ricardo; Maine, Maria Alejandra; Mufarrege, María de Las Mercedes; del Sastre, M. V.; Di Luca, Gisela Alfonsina; Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes; Elsevier Science; Journal of Hazardous Materials; 190; 1-3; 6-2011; 1016-1022 0304-3894 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304389411004821 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhazmat.2011.04.044 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269204133183488 |
score |
13.13397 |