Ordinal pattern transition networks in eye tracking reading signals

Autores
Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests.
Fil: Iaconis, Francisco Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Trujillo Jiménez, Magda Alexandra. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Rosso, O. A.. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
Machine Learning
Decision Theory
Eye tracking
Dyslexia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213921

id CONICETDig_d4d3dc766bd20d24e072e7e1a2c7aaa7
oai_identifier_str oai:ri.conicet.gov.ar:11336/213921
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ordinal pattern transition networks in eye tracking reading signalsIaconis, Francisco RamiroTrujillo Jiménez, Magda AlexandraGasaneo, GustavoRosso, O. A.Delrieux, Claudio AugustoMachine LearningDecision TheoryEye trackingDyslexiahttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests.Fil: Iaconis, Francisco Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Trujillo Jiménez, Magda Alexandra. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Rosso, O. A.. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaAmerican Institute of Physics2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213921Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto; Ordinal pattern transition networks in eye tracking reading signals; American Institute of Physics; Chaos; 33; 5; 5-2023; 1-71054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/5/053101/2887745/Ordinal-pattern-transition-networks-in-eyeinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0142230info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:00Zoai:ri.conicet.gov.ar:11336/213921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:00.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ordinal pattern transition networks in eye tracking reading signals
title Ordinal pattern transition networks in eye tracking reading signals
spellingShingle Ordinal pattern transition networks in eye tracking reading signals
Iaconis, Francisco Ramiro
Machine Learning
Decision Theory
Eye tracking
Dyslexia
title_short Ordinal pattern transition networks in eye tracking reading signals
title_full Ordinal pattern transition networks in eye tracking reading signals
title_fullStr Ordinal pattern transition networks in eye tracking reading signals
title_full_unstemmed Ordinal pattern transition networks in eye tracking reading signals
title_sort Ordinal pattern transition networks in eye tracking reading signals
dc.creator.none.fl_str_mv Iaconis, Francisco Ramiro
Trujillo Jiménez, Magda Alexandra
Gasaneo, Gustavo
Rosso, O. A.
Delrieux, Claudio Augusto
author Iaconis, Francisco Ramiro
author_facet Iaconis, Francisco Ramiro
Trujillo Jiménez, Magda Alexandra
Gasaneo, Gustavo
Rosso, O. A.
Delrieux, Claudio Augusto
author_role author
author2 Trujillo Jiménez, Magda Alexandra
Gasaneo, Gustavo
Rosso, O. A.
Delrieux, Claudio Augusto
author2_role author
author
author
author
dc.subject.none.fl_str_mv Machine Learning
Decision Theory
Eye tracking
Dyslexia
topic Machine Learning
Decision Theory
Eye tracking
Dyslexia
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests.
Fil: Iaconis, Francisco Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Trujillo Jiménez, Magda Alexandra. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Rosso, O. A.. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213921
Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto; Ordinal pattern transition networks in eye tracking reading signals; American Institute of Physics; Chaos; 33; 5; 5-2023; 1-7
1054-1500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213921
identifier_str_mv Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto; Ordinal pattern transition networks in eye tracking reading signals; American Institute of Physics; Chaos; 33; 5; 5-2023; 1-7
1054-1500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/5/053101/2887745/Ordinal-pattern-transition-networks-in-eye
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0142230
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268703489523712
score 12.885934