Ordinal pattern transition networks in eye tracking reading signals
- Autores
- Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests.
Fil: Iaconis, Francisco Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Trujillo Jiménez, Magda Alexandra. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Rosso, O. A.. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
Machine Learning
Decision Theory
Eye tracking
Dyslexia - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213921
Ver los metadatos del registro completo
id |
CONICETDig_d4d3dc766bd20d24e072e7e1a2c7aaa7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213921 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ordinal pattern transition networks in eye tracking reading signalsIaconis, Francisco RamiroTrujillo Jiménez, Magda AlexandraGasaneo, GustavoRosso, O. A.Delrieux, Claudio AugustoMachine LearningDecision TheoryEye trackingDyslexiahttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests.Fil: Iaconis, Francisco Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Trujillo Jiménez, Magda Alexandra. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Rosso, O. A.. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaAmerican Institute of Physics2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213921Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto; Ordinal pattern transition networks in eye tracking reading signals; American Institute of Physics; Chaos; 33; 5; 5-2023; 1-71054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/5/053101/2887745/Ordinal-pattern-transition-networks-in-eyeinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0142230info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:00Zoai:ri.conicet.gov.ar:11336/213921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:00.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ordinal pattern transition networks in eye tracking reading signals |
title |
Ordinal pattern transition networks in eye tracking reading signals |
spellingShingle |
Ordinal pattern transition networks in eye tracking reading signals Iaconis, Francisco Ramiro Machine Learning Decision Theory Eye tracking Dyslexia |
title_short |
Ordinal pattern transition networks in eye tracking reading signals |
title_full |
Ordinal pattern transition networks in eye tracking reading signals |
title_fullStr |
Ordinal pattern transition networks in eye tracking reading signals |
title_full_unstemmed |
Ordinal pattern transition networks in eye tracking reading signals |
title_sort |
Ordinal pattern transition networks in eye tracking reading signals |
dc.creator.none.fl_str_mv |
Iaconis, Francisco Ramiro Trujillo Jiménez, Magda Alexandra Gasaneo, Gustavo Rosso, O. A. Delrieux, Claudio Augusto |
author |
Iaconis, Francisco Ramiro |
author_facet |
Iaconis, Francisco Ramiro Trujillo Jiménez, Magda Alexandra Gasaneo, Gustavo Rosso, O. A. Delrieux, Claudio Augusto |
author_role |
author |
author2 |
Trujillo Jiménez, Magda Alexandra Gasaneo, Gustavo Rosso, O. A. Delrieux, Claudio Augusto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Machine Learning Decision Theory Eye tracking Dyslexia |
topic |
Machine Learning Decision Theory Eye tracking Dyslexia |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests. Fil: Iaconis, Francisco Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Trujillo Jiménez, Magda Alexandra. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Rosso, O. A.. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina |
description |
Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213921 Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto; Ordinal pattern transition networks in eye tracking reading signals; American Institute of Physics; Chaos; 33; 5; 5-2023; 1-7 1054-1500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213921 |
identifier_str_mv |
Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto; Ordinal pattern transition networks in eye tracking reading signals; American Institute of Physics; Chaos; 33; 5; 5-2023; 1-7 1054-1500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/5/053101/2887745/Ordinal-pattern-transition-networks-in-eye info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0142230 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268703489523712 |
score |
12.885934 |