Critical paths of non-permutation and permutation flow shop scheduling problems

Autores
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; Safe, Martin Dario; Vásquez, Óscar C.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The literature on flow shop scheduling has extensively analyzed two classes of problems: permutation and non-permutation ones (PFS and NPFS). Most of the papers in this field have been just devoted on comparing the solutions obtained in both approaches. Our contribution consists of analyzing the structure of the critical paths determining the makespan of both kinds of schedules for the case of 2 jobs and m machines. We introduce a new characterization of the critical paths of PFS solutions as well as a decomposition procedure, yielding a representation of NPFS solutions as sequences of partial PFS ones. In structural comparisons we find cases in which NPFS solutions are dominated by PFS solutions. Numerical comparisons indicate that a wider dispersion of processing times improves the chances of obtaining optimal non-permutation schedules, in particular when this dispersion affects only a few machines.
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Vásquez, Óscar C.. Universidad de Santiago de Chile. Departamento de Ingeniería Industrial; Chile
Materia
NON-PERMUTATION FLOW-SHOP
SCHEDULING
MAKESPAN
CRITICAL PATH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/119215

id CONICETDig_d4b9a2586ac8ccbffc66b6671d2cfe11
oai_identifier_str oai:ri.conicet.gov.ar:11336/119215
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Critical paths of non-permutation and permutation flow shop scheduling problemsRossit, Daniel AlejandroTohmé, Fernando AbelFrutos, MarianoSafe, Martin DarioVásquez, Óscar C.NON-PERMUTATION FLOW-SHOPSCHEDULINGMAKESPANCRITICAL PATHhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The literature on flow shop scheduling has extensively analyzed two classes of problems: permutation and non-permutation ones (PFS and NPFS). Most of the papers in this field have been just devoted on comparing the solutions obtained in both approaches. Our contribution consists of analyzing the structure of the critical paths determining the makespan of both kinds of schedules for the case of 2 jobs and m machines. We introduce a new characterization of the critical paths of PFS solutions as well as a decomposition procedure, yielding a representation of NPFS solutions as sequences of partial PFS ones. In structural comparisons we find cases in which NPFS solutions are dominated by PFS solutions. Numerical comparisons indicate that a wider dispersion of processing times improves the chances of obtaining optimal non-permutation schedules, in particular when this dispersion affects only a few machines.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Vásquez, Óscar C.. Universidad de Santiago de Chile. Departamento de Ingeniería Industrial; ChileGrowing Science2019-08-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119215Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; Safe, Martin Dario; Vásquez, Óscar C.; Critical paths of non-permutation and permutation flow shop scheduling problems; Growing Science; International Journal of Industrial Engineering Computations; 11; 2; 10-8-2019; 281-2981923-29261923-2934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/3542-critical-paths-of-non-permutation-and-permutation-flow-shop-scheduling-problems.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2019.8.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:28:42Zoai:ri.conicet.gov.ar:11336/119215instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:28:42.355CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Critical paths of non-permutation and permutation flow shop scheduling problems
title Critical paths of non-permutation and permutation flow shop scheduling problems
spellingShingle Critical paths of non-permutation and permutation flow shop scheduling problems
Rossit, Daniel Alejandro
NON-PERMUTATION FLOW-SHOP
SCHEDULING
MAKESPAN
CRITICAL PATH
title_short Critical paths of non-permutation and permutation flow shop scheduling problems
title_full Critical paths of non-permutation and permutation flow shop scheduling problems
title_fullStr Critical paths of non-permutation and permutation flow shop scheduling problems
title_full_unstemmed Critical paths of non-permutation and permutation flow shop scheduling problems
title_sort Critical paths of non-permutation and permutation flow shop scheduling problems
dc.creator.none.fl_str_mv Rossit, Daniel Alejandro
Tohmé, Fernando Abel
Frutos, Mariano
Safe, Martin Dario
Vásquez, Óscar C.
author Rossit, Daniel Alejandro
author_facet Rossit, Daniel Alejandro
Tohmé, Fernando Abel
Frutos, Mariano
Safe, Martin Dario
Vásquez, Óscar C.
author_role author
author2 Tohmé, Fernando Abel
Frutos, Mariano
Safe, Martin Dario
Vásquez, Óscar C.
author2_role author
author
author
author
dc.subject.none.fl_str_mv NON-PERMUTATION FLOW-SHOP
SCHEDULING
MAKESPAN
CRITICAL PATH
topic NON-PERMUTATION FLOW-SHOP
SCHEDULING
MAKESPAN
CRITICAL PATH
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The literature on flow shop scheduling has extensively analyzed two classes of problems: permutation and non-permutation ones (PFS and NPFS). Most of the papers in this field have been just devoted on comparing the solutions obtained in both approaches. Our contribution consists of analyzing the structure of the critical paths determining the makespan of both kinds of schedules for the case of 2 jobs and m machines. We introduce a new characterization of the critical paths of PFS solutions as well as a decomposition procedure, yielding a representation of NPFS solutions as sequences of partial PFS ones. In structural comparisons we find cases in which NPFS solutions are dominated by PFS solutions. Numerical comparisons indicate that a wider dispersion of processing times improves the chances of obtaining optimal non-permutation schedules, in particular when this dispersion affects only a few machines.
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Vásquez, Óscar C.. Universidad de Santiago de Chile. Departamento de Ingeniería Industrial; Chile
description The literature on flow shop scheduling has extensively analyzed two classes of problems: permutation and non-permutation ones (PFS and NPFS). Most of the papers in this field have been just devoted on comparing the solutions obtained in both approaches. Our contribution consists of analyzing the structure of the critical paths determining the makespan of both kinds of schedules for the case of 2 jobs and m machines. We introduce a new characterization of the critical paths of PFS solutions as well as a decomposition procedure, yielding a representation of NPFS solutions as sequences of partial PFS ones. In structural comparisons we find cases in which NPFS solutions are dominated by PFS solutions. Numerical comparisons indicate that a wider dispersion of processing times improves the chances of obtaining optimal non-permutation schedules, in particular when this dispersion affects only a few machines.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/119215
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; Safe, Martin Dario; Vásquez, Óscar C.; Critical paths of non-permutation and permutation flow shop scheduling problems; Growing Science; International Journal of Industrial Engineering Computations; 11; 2; 10-8-2019; 281-298
1923-2926
1923-2934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/119215
identifier_str_mv Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; Safe, Martin Dario; Vásquez, Óscar C.; Critical paths of non-permutation and permutation flow shop scheduling problems; Growing Science; International Journal of Industrial Engineering Computations; 11; 2; 10-8-2019; 281-298
1923-2926
1923-2934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/3542-critical-paths-of-non-permutation-and-permutation-flow-shop-scheduling-problems.html
info:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2019.8.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Growing Science
publisher.none.fl_str_mv Growing Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083427093184512
score 13.22299