Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm

Autores
Oleksy, Isabella A.; Solomon, Christopher T.; Jones, Stuart E.; Olson, Carly; Bertolet, Brittni L.; Adrian, Rita; Bansal, Sheel; Baron, Jill S.; Brothers, Soren; Chandra, Sudeep; Chou, Hsiu-Mei; Colom Montero, William; Culpepper, Joshua; de Eyto, Elvira; Farragher, Matthew J.; Hilt, Sabine; Holeck, Kristen T.; Kazanjian, Garabet; Klaus, Marcus; Klug, Jennifer; Köhler, Jan; Laas, Alo; Lundin, Erik; Parkes, Alice H.; Rose, Kevin C.; Rustam, Lars G.; Rusak, James; Scordo, Facundo; Vanni, Michael J.; Verburg, Piet; Weyhenmeyer, Gesa A.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient-color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high-frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production.
Fil: Oleksy, Isabella A.. University of Colorado; Estados Unidos
Fil: Solomon, Christopher T.. Cary Institute Of Ecosystem Studies; Estados Unidos
Fil: Jones, Stuart E.. University of Notre Dame; Estados Unidos
Fil: Olson, Carly. University of Nebraska; Estados Unidos
Fil: Bertolet, Brittni L.. University of California at Irvine; Estados Unidos
Fil: Adrian, Rita. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; Alemania
Fil: Bansal, Sheel. United States Geological Survey; Estados Unidos
Fil: Baron, Jill S.. United States Geological Survey; Estados Unidos
Fil: Brothers, Soren. University of Toronto; Canadá
Fil: Chandra, Sudeep. University of Nevada; Estados Unidos
Fil: Chou, Hsiu-Mei. National Center For High Performance Computing; China
Fil: Colom Montero, William. Uppsala Universitet; Suecia
Fil: Culpepper, Joshua. York University; Estados Unidos
Fil: de Eyto, Elvira. Marine Institute; Irlanda
Fil: Farragher, Matthew J.. University Of Maine; Estados Unidos
Fil: Hilt, Sabine. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; Alemania
Fil: Holeck, Kristen T.. Cornell University; Estados Unidos
Fil: Kazanjian, Garabet. American University Of Armenia; Armenia
Fil: Klaus, Marcus. Swedish University Of Agricultural Sciences; Suecia
Fil: Klug, Jennifer. Fairfield University; Estados Unidos
Fil: Köhler, Jan. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; Alemania
Fil: Laas, Alo. Estonian University Of Life Sciences; Estonia
Fil: Lundin, Erik. Swedish Polar Research Secretariate; Suecia
Fil: Parkes, Alice H.. Université Du Québec; Canadá
Fil: Rose, Kevin C.. Rensselaer Polytechnic Institute; Estados Unidos
Fil: Rustam, Lars G.. Cornell University; Estados Unidos
Fil: Rusak, James. Queens University. Department Of Biology; Canadá
Fil: Scordo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentina
Fil: Vanni, Michael J.. Miami University; Estados Unidos
Fil: Verburg, Piet. Victoria University Of Wellington; Nueva Zelanda
Fil: Weyhenmeyer, Gesa A.. Uppsala Universitet; Suecia
Materia
LAKE
PRIMARY PRODUCTIVITY
NUTRIENT CONTROL
ENVIRONMENTAL CHANGE
PROCESS MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/277389

id CONICETDig_d4b99204e04e8866444fd07d04e7f9f7
oai_identifier_str oai:ri.conicet.gov.ar:11336/277389
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigmOleksy, Isabella A.Solomon, Christopher T.Jones, Stuart E.Olson, CarlyBertolet, Brittni L.Adrian, RitaBansal, SheelBaron, Jill S.Brothers, SorenChandra, SudeepChou, Hsiu-MeiColom Montero, WilliamCulpepper, Joshuade Eyto, ElviraFarragher, Matthew J.Hilt, SabineHoleck, Kristen T.Kazanjian, GarabetKlaus, MarcusKlug, JenniferKöhler, JanLaas, AloLundin, ErikParkes, Alice H.Rose, Kevin C.Rustam, Lars G.Rusak, JamesScordo, FacundoVanni, Michael J.Verburg, PietWeyhenmeyer, Gesa A.LAKEPRIMARY PRODUCTIVITYNUTRIENT CONTROLENVIRONMENTAL CHANGEPROCESS MODELhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient-color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high-frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production.Fil: Oleksy, Isabella A.. University of Colorado; Estados UnidosFil: Solomon, Christopher T.. Cary Institute Of Ecosystem Studies; Estados UnidosFil: Jones, Stuart E.. University of Notre Dame; Estados UnidosFil: Olson, Carly. University of Nebraska; Estados UnidosFil: Bertolet, Brittni L.. University of California at Irvine; Estados UnidosFil: Adrian, Rita. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Bansal, Sheel. United States Geological Survey; Estados UnidosFil: Baron, Jill S.. United States Geological Survey; Estados UnidosFil: Brothers, Soren. University of Toronto; CanadáFil: Chandra, Sudeep. University of Nevada; Estados UnidosFil: Chou, Hsiu-Mei. National Center For High Performance Computing; ChinaFil: Colom Montero, William. Uppsala Universitet; SueciaFil: Culpepper, Joshua. York University; Estados UnidosFil: de Eyto, Elvira. Marine Institute; IrlandaFil: Farragher, Matthew J.. University Of Maine; Estados UnidosFil: Hilt, Sabine. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Holeck, Kristen T.. Cornell University; Estados UnidosFil: Kazanjian, Garabet. American University Of Armenia; ArmeniaFil: Klaus, Marcus. Swedish University Of Agricultural Sciences; SueciaFil: Klug, Jennifer. Fairfield University; Estados UnidosFil: Köhler, Jan. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Laas, Alo. Estonian University Of Life Sciences; EstoniaFil: Lundin, Erik. Swedish Polar Research Secretariate; SueciaFil: Parkes, Alice H.. Université Du Québec; CanadáFil: Rose, Kevin C.. Rensselaer Polytechnic Institute; Estados UnidosFil: Rustam, Lars G.. Cornell University; Estados UnidosFil: Rusak, James. Queens University. Department Of Biology; CanadáFil: Scordo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; ArgentinaFil: Vanni, Michael J.. Miami University; Estados UnidosFil: Verburg, Piet. Victoria University Of Wellington; Nueva ZelandaFil: Weyhenmeyer, Gesa A.. Uppsala Universitet; SueciaWiley2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277389Oleksy, Isabella A.; Solomon, Christopher T.; Jones, Stuart E.; Olson, Carly; Bertolet, Brittni L.; et al.; Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm; Wiley; Journal of Geophysical Research: Biogeosciences; 129; 12; 12-2024; 1-152169-89532169-8961CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JG008140info:eu-repo/semantics/altIdentifier/doi/10.1029/2024JG008140info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:13:42Zoai:ri.conicet.gov.ar:11336/277389instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:13:43.222CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
title Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
spellingShingle Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
Oleksy, Isabella A.
LAKE
PRIMARY PRODUCTIVITY
NUTRIENT CONTROL
ENVIRONMENTAL CHANGE
PROCESS MODEL
title_short Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
title_full Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
title_fullStr Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
title_full_unstemmed Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
title_sort Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm
dc.creator.none.fl_str_mv Oleksy, Isabella A.
Solomon, Christopher T.
Jones, Stuart E.
Olson, Carly
Bertolet, Brittni L.
Adrian, Rita
Bansal, Sheel
Baron, Jill S.
Brothers, Soren
Chandra, Sudeep
Chou, Hsiu-Mei
Colom Montero, William
Culpepper, Joshua
de Eyto, Elvira
Farragher, Matthew J.
Hilt, Sabine
Holeck, Kristen T.
Kazanjian, Garabet
Klaus, Marcus
Klug, Jennifer
Köhler, Jan
Laas, Alo
Lundin, Erik
Parkes, Alice H.
Rose, Kevin C.
Rustam, Lars G.
Rusak, James
Scordo, Facundo
Vanni, Michael J.
Verburg, Piet
Weyhenmeyer, Gesa A.
author Oleksy, Isabella A.
author_facet Oleksy, Isabella A.
Solomon, Christopher T.
Jones, Stuart E.
Olson, Carly
Bertolet, Brittni L.
Adrian, Rita
Bansal, Sheel
Baron, Jill S.
Brothers, Soren
Chandra, Sudeep
Chou, Hsiu-Mei
Colom Montero, William
Culpepper, Joshua
de Eyto, Elvira
Farragher, Matthew J.
Hilt, Sabine
Holeck, Kristen T.
Kazanjian, Garabet
Klaus, Marcus
Klug, Jennifer
Köhler, Jan
Laas, Alo
Lundin, Erik
Parkes, Alice H.
Rose, Kevin C.
Rustam, Lars G.
Rusak, James
Scordo, Facundo
Vanni, Michael J.
Verburg, Piet
Weyhenmeyer, Gesa A.
author_role author
author2 Solomon, Christopher T.
Jones, Stuart E.
Olson, Carly
Bertolet, Brittni L.
Adrian, Rita
Bansal, Sheel
Baron, Jill S.
Brothers, Soren
Chandra, Sudeep
Chou, Hsiu-Mei
Colom Montero, William
Culpepper, Joshua
de Eyto, Elvira
Farragher, Matthew J.
Hilt, Sabine
Holeck, Kristen T.
Kazanjian, Garabet
Klaus, Marcus
Klug, Jennifer
Köhler, Jan
Laas, Alo
Lundin, Erik
Parkes, Alice H.
Rose, Kevin C.
Rustam, Lars G.
Rusak, James
Scordo, Facundo
Vanni, Michael J.
Verburg, Piet
Weyhenmeyer, Gesa A.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv LAKE
PRIMARY PRODUCTIVITY
NUTRIENT CONTROL
ENVIRONMENTAL CHANGE
PROCESS MODEL
topic LAKE
PRIMARY PRODUCTIVITY
NUTRIENT CONTROL
ENVIRONMENTAL CHANGE
PROCESS MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient-color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high-frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production.
Fil: Oleksy, Isabella A.. University of Colorado; Estados Unidos
Fil: Solomon, Christopher T.. Cary Institute Of Ecosystem Studies; Estados Unidos
Fil: Jones, Stuart E.. University of Notre Dame; Estados Unidos
Fil: Olson, Carly. University of Nebraska; Estados Unidos
Fil: Bertolet, Brittni L.. University of California at Irvine; Estados Unidos
Fil: Adrian, Rita. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; Alemania
Fil: Bansal, Sheel. United States Geological Survey; Estados Unidos
Fil: Baron, Jill S.. United States Geological Survey; Estados Unidos
Fil: Brothers, Soren. University of Toronto; Canadá
Fil: Chandra, Sudeep. University of Nevada; Estados Unidos
Fil: Chou, Hsiu-Mei. National Center For High Performance Computing; China
Fil: Colom Montero, William. Uppsala Universitet; Suecia
Fil: Culpepper, Joshua. York University; Estados Unidos
Fil: de Eyto, Elvira. Marine Institute; Irlanda
Fil: Farragher, Matthew J.. University Of Maine; Estados Unidos
Fil: Hilt, Sabine. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; Alemania
Fil: Holeck, Kristen T.. Cornell University; Estados Unidos
Fil: Kazanjian, Garabet. American University Of Armenia; Armenia
Fil: Klaus, Marcus. Swedish University Of Agricultural Sciences; Suecia
Fil: Klug, Jennifer. Fairfield University; Estados Unidos
Fil: Köhler, Jan. Leibniz - Institute of Freshwater Ecology and Inland Fisheries; Alemania
Fil: Laas, Alo. Estonian University Of Life Sciences; Estonia
Fil: Lundin, Erik. Swedish Polar Research Secretariate; Suecia
Fil: Parkes, Alice H.. Université Du Québec; Canadá
Fil: Rose, Kevin C.. Rensselaer Polytechnic Institute; Estados Unidos
Fil: Rustam, Lars G.. Cornell University; Estados Unidos
Fil: Rusak, James. Queens University. Department Of Biology; Canadá
Fil: Scordo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentina
Fil: Vanni, Michael J.. Miami University; Estados Unidos
Fil: Verburg, Piet. Victoria University Of Wellington; Nueva Zelanda
Fil: Weyhenmeyer, Gesa A.. Uppsala Universitet; Suecia
description Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient-color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high-frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production.
publishDate 2024
dc.date.none.fl_str_mv 2024-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/277389
Oleksy, Isabella A.; Solomon, Christopher T.; Jones, Stuart E.; Olson, Carly; Bertolet, Brittni L.; et al.; Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm; Wiley; Journal of Geophysical Research: Biogeosciences; 129; 12; 12-2024; 1-15
2169-8953
2169-8961
CONICET Digital
CONICET
url http://hdl.handle.net/11336/277389
identifier_str_mv Oleksy, Isabella A.; Solomon, Christopher T.; Jones, Stuart E.; Olson, Carly; Bertolet, Brittni L.; et al.; Controls on lake pelagic primary productivity: Formalizing the nutrient‐color paradigm; Wiley; Journal of Geophysical Research: Biogeosciences; 129; 12; 12-2024; 1-15
2169-8953
2169-8961
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JG008140
info:eu-repo/semantics/altIdentifier/doi/10.1029/2024JG008140
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335569465507840
score 13.075124