Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions
- Autores
- Hoppe, Cristina Elena; Galante, Maria Jose; Oyanguren, Patricia Angelica; Williams, Roberto Juan Jose
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Polymer-dispersed liquid crystals (PDLCs), consisting of a dispersion of LC-rich domains in a polymer matrix, are used in different types of electrooptical devices. Their efficiency can in principle be increased if the LC domains exhibit a uniform characteristic size in the range of the wavelength of visible light. In an attempt to generate this type of morphology, a model PDLC system based on a 50 wt % solution of N-4-ethoxybenzylidene-4‘-n-butylaniline (EBBA) in an epoxy monomer (diglycidyl ether of bisphenol A, DGEBA) was analyzed. The polymerization-induced phase separation was performed at 80 °C, using a tertiary amine as initiator (benzyldimethylamine, BDMA). By selecting an initial concentration located close to the critical composition to promote spinodal demixing, co-continuous morphologies were obtained, which were rapidly fixed by gelation. The conversion of epoxy groups (p) was followed by near-infrared spectroscopy (NIR). At p = 0.28, phase separation took place as revealed by transmission optical microscopy (TOM) and by the acceleration observed in the isothermal cure rate. Gelation took place at p = 0.35, soon after the cloud point. Although the primary structure was arrested by gelation, the LC-rich phase was continuously enriched in pure EBBA, as revealed by the increase in TNI with conversion monitored by differential scanning calorimetry (DSC). Co-continuous structures remained unmodified after the storage of PDLCs for several months. The nematic range of the LC-rich phase at p = 1 was comprised between 34 °C (melting point) and TNI = 68 °C. A 57% of the initial LC was present in nematic domains at 40 °C, as determined by the variation of the FTIR absorbance of a characteristic LC peak between isotropic and nematic states. Therefore, a possible route to obtain PDLCs with a uniform characteristic size of LC domains is to start with a composition close to the critical one and select conditions to produce liquid−liquid demixing soon before gelation.
Fil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Galante, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Oyanguren, Patricia Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
Pdlc
Epoxy
Polymerization Induced Phase Separation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78219
Ver los metadatos del registro completo
id |
CONICETDig_d44274561af07c33d2d135a1dec97e86 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78219 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy SolutionsHoppe, Cristina ElenaGalante, Maria JoseOyanguren, Patricia AngelicaWilliams, Roberto Juan JosePdlcEpoxyPolymerization Induced Phase Separationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Polymer-dispersed liquid crystals (PDLCs), consisting of a dispersion of LC-rich domains in a polymer matrix, are used in different types of electrooptical devices. Their efficiency can in principle be increased if the LC domains exhibit a uniform characteristic size in the range of the wavelength of visible light. In an attempt to generate this type of morphology, a model PDLC system based on a 50 wt % solution of N-4-ethoxybenzylidene-4‘-n-butylaniline (EBBA) in an epoxy monomer (diglycidyl ether of bisphenol A, DGEBA) was analyzed. The polymerization-induced phase separation was performed at 80 °C, using a tertiary amine as initiator (benzyldimethylamine, BDMA). By selecting an initial concentration located close to the critical composition to promote spinodal demixing, co-continuous morphologies were obtained, which were rapidly fixed by gelation. The conversion of epoxy groups (p) was followed by near-infrared spectroscopy (NIR). At p = 0.28, phase separation took place as revealed by transmission optical microscopy (TOM) and by the acceleration observed in the isothermal cure rate. Gelation took place at p = 0.35, soon after the cloud point. Although the primary structure was arrested by gelation, the LC-rich phase was continuously enriched in pure EBBA, as revealed by the increase in TNI with conversion monitored by differential scanning calorimetry (DSC). Co-continuous structures remained unmodified after the storage of PDLCs for several months. The nematic range of the LC-rich phase at p = 1 was comprised between 34 °C (melting point) and TNI = 68 °C. A 57% of the initial LC was present in nematic domains at 40 °C, as determined by the variation of the FTIR absorbance of a characteristic LC peak between isotropic and nematic states. Therefore, a possible route to obtain PDLCs with a uniform characteristic size of LC domains is to start with a composition close to the critical one and select conditions to produce liquid−liquid demixing soon before gelation.Fil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Galante, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Oyanguren, Patricia Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaAmerican Chemical Society2002-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78219Hoppe, Cristina Elena; Galante, Maria Jose; Oyanguren, Patricia Angelica; Williams, Roberto Juan Jose; Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions; American Chemical Society; Macromolecules; 35; 16; 7-2002; 6324-63310024-9297CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ma0200120info:eu-repo/semantics/altIdentifier/doi/10.1021/ma0200120info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:03Zoai:ri.conicet.gov.ar:11336/78219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:03.997CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions |
title |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions |
spellingShingle |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions Hoppe, Cristina Elena Pdlc Epoxy Polymerization Induced Phase Separation |
title_short |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions |
title_full |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions |
title_fullStr |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions |
title_full_unstemmed |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions |
title_sort |
Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions |
dc.creator.none.fl_str_mv |
Hoppe, Cristina Elena Galante, Maria Jose Oyanguren, Patricia Angelica Williams, Roberto Juan Jose |
author |
Hoppe, Cristina Elena |
author_facet |
Hoppe, Cristina Elena Galante, Maria Jose Oyanguren, Patricia Angelica Williams, Roberto Juan Jose |
author_role |
author |
author2 |
Galante, Maria Jose Oyanguren, Patricia Angelica Williams, Roberto Juan Jose |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Pdlc Epoxy Polymerization Induced Phase Separation |
topic |
Pdlc Epoxy Polymerization Induced Phase Separation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Polymer-dispersed liquid crystals (PDLCs), consisting of a dispersion of LC-rich domains in a polymer matrix, are used in different types of electrooptical devices. Their efficiency can in principle be increased if the LC domains exhibit a uniform characteristic size in the range of the wavelength of visible light. In an attempt to generate this type of morphology, a model PDLC system based on a 50 wt % solution of N-4-ethoxybenzylidene-4‘-n-butylaniline (EBBA) in an epoxy monomer (diglycidyl ether of bisphenol A, DGEBA) was analyzed. The polymerization-induced phase separation was performed at 80 °C, using a tertiary amine as initiator (benzyldimethylamine, BDMA). By selecting an initial concentration located close to the critical composition to promote spinodal demixing, co-continuous morphologies were obtained, which were rapidly fixed by gelation. The conversion of epoxy groups (p) was followed by near-infrared spectroscopy (NIR). At p = 0.28, phase separation took place as revealed by transmission optical microscopy (TOM) and by the acceleration observed in the isothermal cure rate. Gelation took place at p = 0.35, soon after the cloud point. Although the primary structure was arrested by gelation, the LC-rich phase was continuously enriched in pure EBBA, as revealed by the increase in TNI with conversion monitored by differential scanning calorimetry (DSC). Co-continuous structures remained unmodified after the storage of PDLCs for several months. The nematic range of the LC-rich phase at p = 1 was comprised between 34 °C (melting point) and TNI = 68 °C. A 57% of the initial LC was present in nematic domains at 40 °C, as determined by the variation of the FTIR absorbance of a characteristic LC peak between isotropic and nematic states. Therefore, a possible route to obtain PDLCs with a uniform characteristic size of LC domains is to start with a composition close to the critical one and select conditions to produce liquid−liquid demixing soon before gelation. Fil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Galante, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Oyanguren, Patricia Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Polymer-dispersed liquid crystals (PDLCs), consisting of a dispersion of LC-rich domains in a polymer matrix, are used in different types of electrooptical devices. Their efficiency can in principle be increased if the LC domains exhibit a uniform characteristic size in the range of the wavelength of visible light. In an attempt to generate this type of morphology, a model PDLC system based on a 50 wt % solution of N-4-ethoxybenzylidene-4‘-n-butylaniline (EBBA) in an epoxy monomer (diglycidyl ether of bisphenol A, DGEBA) was analyzed. The polymerization-induced phase separation was performed at 80 °C, using a tertiary amine as initiator (benzyldimethylamine, BDMA). By selecting an initial concentration located close to the critical composition to promote spinodal demixing, co-continuous morphologies were obtained, which were rapidly fixed by gelation. The conversion of epoxy groups (p) was followed by near-infrared spectroscopy (NIR). At p = 0.28, phase separation took place as revealed by transmission optical microscopy (TOM) and by the acceleration observed in the isothermal cure rate. Gelation took place at p = 0.35, soon after the cloud point. Although the primary structure was arrested by gelation, the LC-rich phase was continuously enriched in pure EBBA, as revealed by the increase in TNI with conversion monitored by differential scanning calorimetry (DSC). Co-continuous structures remained unmodified after the storage of PDLCs for several months. The nematic range of the LC-rich phase at p = 1 was comprised between 34 °C (melting point) and TNI = 68 °C. A 57% of the initial LC was present in nematic domains at 40 °C, as determined by the variation of the FTIR absorbance of a characteristic LC peak between isotropic and nematic states. Therefore, a possible route to obtain PDLCs with a uniform characteristic size of LC domains is to start with a composition close to the critical one and select conditions to produce liquid−liquid demixing soon before gelation. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78219 Hoppe, Cristina Elena; Galante, Maria Jose; Oyanguren, Patricia Angelica; Williams, Roberto Juan Jose; Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions; American Chemical Society; Macromolecules; 35; 16; 7-2002; 6324-6331 0024-9297 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78219 |
identifier_str_mv |
Hoppe, Cristina Elena; Galante, Maria Jose; Oyanguren, Patricia Angelica; Williams, Roberto Juan Jose; Polymer-Dispersed Liquid Crystals with Co-continuous Structures Generated by Polymerization-Induced Phase Separation of EBBA-Epoxy Solutions; American Chemical Society; Macromolecules; 35; 16; 7-2002; 6324-6331 0024-9297 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ma0200120 info:eu-repo/semantics/altIdentifier/doi/10.1021/ma0200120 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269987631267840 |
score |
13.13397 |