Brownian motion in en external field revisited

Autores
Plastino, Angelo; Rocca, Mario Carlos; Monteoliva, D.; Hernando, A.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many interesting physical examples, the partition function is divergent, as first pointed out in 1924 by Fermi (for the hydrogen-atom case). Thus, the usualtoolbox of statistical mechanics becomes unavailable, notwithstanding the well known fact that the pertinent system may appear to be in a thermal steady state.We tackle and overcome these difficulties here by appeal to firmly established but not too well known mathematical recipes and obtain finite values for a typical divergent partitionfunction, that of a Brownian particle in an external field. This allows not only for calculating thermodynamic observables of interest, but for also instantiating other kind of statistical mechanics´ novelties.
Fil: Plastino, Angelo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Monteoliva, D.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Hernando, A.. Kido Dynamics S. A.; Suiza
Materia
Divergent partition functions;
Statistical mechanics,
Fisher information
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/174769

id CONICETDig_d3f99ab263200015b90e6e3ef7b5587f
oai_identifier_str oai:ri.conicet.gov.ar:11336/174769
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Brownian motion in en external field revisitedPlastino, AngeloRocca, Mario CarlosMonteoliva, D.Hernando, A.Divergent partition functions;Statistical mechanics,Fisher informationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In many interesting physical examples, the partition function is divergent, as first pointed out in 1924 by Fermi (for the hydrogen-atom case). Thus, the usualtoolbox of statistical mechanics becomes unavailable, notwithstanding the well known fact that the pertinent system may appear to be in a thermal steady state.We tackle and overcome these difficulties here by appeal to firmly established but not too well known mathematical recipes and obtain finite values for a typical divergent partitionfunction, that of a Brownian particle in an external field. This allows not only for calculating thermodynamic observables of interest, but for also instantiating other kind of statistical mechanics´ novelties.Fil: Plastino, Angelo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Monteoliva, D.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Hernando, A.. Kido Dynamics S. A.; SuizaScientific Research Publisher2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174769Plastino, Angelo; Rocca, Mario Carlos; Monteoliva, D.; Hernando, A.; Brownian motion in en external field revisited; Scientific Research Publisher; Journal of Modern Physics; 12; 2; 1-2021; 82-902153-11962153-120XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2021.122008info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=106572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:45Zoai:ri.conicet.gov.ar:11336/174769instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:45.861CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Brownian motion in en external field revisited
title Brownian motion in en external field revisited
spellingShingle Brownian motion in en external field revisited
Plastino, Angelo
Divergent partition functions;
Statistical mechanics,
Fisher information
title_short Brownian motion in en external field revisited
title_full Brownian motion in en external field revisited
title_fullStr Brownian motion in en external field revisited
title_full_unstemmed Brownian motion in en external field revisited
title_sort Brownian motion in en external field revisited
dc.creator.none.fl_str_mv Plastino, Angelo
Rocca, Mario Carlos
Monteoliva, D.
Hernando, A.
author Plastino, Angelo
author_facet Plastino, Angelo
Rocca, Mario Carlos
Monteoliva, D.
Hernando, A.
author_role author
author2 Rocca, Mario Carlos
Monteoliva, D.
Hernando, A.
author2_role author
author
author
dc.subject.none.fl_str_mv Divergent partition functions;
Statistical mechanics,
Fisher information
topic Divergent partition functions;
Statistical mechanics,
Fisher information
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In many interesting physical examples, the partition function is divergent, as first pointed out in 1924 by Fermi (for the hydrogen-atom case). Thus, the usualtoolbox of statistical mechanics becomes unavailable, notwithstanding the well known fact that the pertinent system may appear to be in a thermal steady state.We tackle and overcome these difficulties here by appeal to firmly established but not too well known mathematical recipes and obtain finite values for a typical divergent partitionfunction, that of a Brownian particle in an external field. This allows not only for calculating thermodynamic observables of interest, but for also instantiating other kind of statistical mechanics´ novelties.
Fil: Plastino, Angelo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Monteoliva, D.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Hernando, A.. Kido Dynamics S. A.; Suiza
description In many interesting physical examples, the partition function is divergent, as first pointed out in 1924 by Fermi (for the hydrogen-atom case). Thus, the usualtoolbox of statistical mechanics becomes unavailable, notwithstanding the well known fact that the pertinent system may appear to be in a thermal steady state.We tackle and overcome these difficulties here by appeal to firmly established but not too well known mathematical recipes and obtain finite values for a typical divergent partitionfunction, that of a Brownian particle in an external field. This allows not only for calculating thermodynamic observables of interest, but for also instantiating other kind of statistical mechanics´ novelties.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/174769
Plastino, Angelo; Rocca, Mario Carlos; Monteoliva, D.; Hernando, A.; Brownian motion in en external field revisited; Scientific Research Publisher; Journal of Modern Physics; 12; 2; 1-2021; 82-90
2153-1196
2153-120X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/174769
identifier_str_mv Plastino, Angelo; Rocca, Mario Carlos; Monteoliva, D.; Hernando, A.; Brownian motion in en external field revisited; Scientific Research Publisher; Journal of Modern Physics; 12; 2; 1-2021; 82-90
2153-1196
2153-120X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2021.122008
info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=106572
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Scientific Research Publisher
publisher.none.fl_str_mv Scientific Research Publisher
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614077990567936
score 13.070432