Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts

Autores
Cabilla, Griselda; Bonivardi, Adrian Lionel; Baltanas, Miguel Angel
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The adsorption and decomposition of formic acid on a highly dispersed supported Pd/SiO2 catalyst (2 wt.% Pd) prepared via ion exchange (IE) of [Pd(NH3)4]2+ in alkaline solution, together with two Ca-promoted preparations (Ca/Pd=2 at./at.) where calcium was added either to the prereduced Pd crystallites or to the diammine palladium complex, were studied by FTIR at 298–653 K. On the support, HCOOH is mostly adsorbed molecularly at room temperature, with partial dimerization, condensation and extensive hydrogen bonding, but readily decomposes, on the Pd crystallites of Pd/SiO2, via decarbonylation, to give CO multicoordinated to the metal surface, and water. With heating, formic acid decomposition is accompanied by some water gas shift as well, while CO reacts to give methyl (methane) and methoxy. Calcium promotion to both the prereduced Pd and its diammine complex precursor, enhanced HCOOH decomposition onto the catalyst surface, even at 298 K. Together with sorbed HCOOH and chemisorbed CO, mono- and bidentate formates were observed on these materials, owing to the incorporation of well-dispersed CaOxHy. These formates were readily decomposed by atomic hydrogen produced by decarbonylation/WGS of formic acid on Pd. At increasing temperatures, some carbonates (polydentate and simple) were formed, but hardly any methane was detected. On Ca–Pd/SiO2 with calcium added to prereduced Pd metal particles the extension and/or onset of all these processes was more straightforward than on the promoted Ca–Pd/SiO2 where calcium was added to diammine palladium instead, most likely owing to the combined impact of a higher dispersion of the Pd crystallites on the former preparation, and calcium oxyhydroxide decoration (CaOxHy) of the metal particles on the latter, which hamper H-spillover from them.
Fil: Cabilla, Griselda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Bonivardi, Adrian Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Baltanas, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/27370

id CONICETDig_d3d58be25e5fc55eb9f1b03ecf11999e
oai_identifier_str oai:ri.conicet.gov.ar:11336/27370
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 CatalystsCabilla, GriseldaBonivardi, Adrian LionelBaltanas, Miguel Angelhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The adsorption and decomposition of formic acid on a highly dispersed supported Pd/SiO2 catalyst (2 wt.% Pd) prepared via ion exchange (IE) of [Pd(NH3)4]2+ in alkaline solution, together with two Ca-promoted preparations (Ca/Pd=2 at./at.) where calcium was added either to the prereduced Pd crystallites or to the diammine palladium complex, were studied by FTIR at 298–653 K. On the support, HCOOH is mostly adsorbed molecularly at room temperature, with partial dimerization, condensation and extensive hydrogen bonding, but readily decomposes, on the Pd crystallites of Pd/SiO2, via decarbonylation, to give CO multicoordinated to the metal surface, and water. With heating, formic acid decomposition is accompanied by some water gas shift as well, while CO reacts to give methyl (methane) and methoxy. Calcium promotion to both the prereduced Pd and its diammine complex precursor, enhanced HCOOH decomposition onto the catalyst surface, even at 298 K. Together with sorbed HCOOH and chemisorbed CO, mono- and bidentate formates were observed on these materials, owing to the incorporation of well-dispersed CaOxHy. These formates were readily decomposed by atomic hydrogen produced by decarbonylation/WGS of formic acid on Pd. At increasing temperatures, some carbonates (polydentate and simple) were formed, but hardly any methane was detected. On Ca–Pd/SiO2 with calcium added to prereduced Pd metal particles the extension and/or onset of all these processes was more straightforward than on the promoted Ca–Pd/SiO2 where calcium was added to diammine palladium instead, most likely owing to the combined impact of a higher dispersion of the Pd crystallites on the former preparation, and calcium oxyhydroxide decoration (CaOxHy) of the metal particles on the latter, which hamper H-spillover from them.Fil: Cabilla, Griselda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Bonivardi, Adrian Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Baltanas, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier Science2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27370Cabilla, Griselda; Bonivardi, Adrian Lionel; Baltanas, Miguel Angel; Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts; Elsevier Science; Applied Catalysis A: General; 255; 12-2003; 181-1950926-860XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0926-860X(03)00546-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:49Zoai:ri.conicet.gov.ar:11336/27370instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:49.356CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
title Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
spellingShingle Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
Cabilla, Griselda
title_short Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
title_full Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
title_fullStr Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
title_full_unstemmed Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
title_sort Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts
dc.creator.none.fl_str_mv Cabilla, Griselda
Bonivardi, Adrian Lionel
Baltanas, Miguel Angel
author Cabilla, Griselda
author_facet Cabilla, Griselda
Bonivardi, Adrian Lionel
Baltanas, Miguel Angel
author_role author
author2 Bonivardi, Adrian Lionel
Baltanas, Miguel Angel
author2_role author
author
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The adsorption and decomposition of formic acid on a highly dispersed supported Pd/SiO2 catalyst (2 wt.% Pd) prepared via ion exchange (IE) of [Pd(NH3)4]2+ in alkaline solution, together with two Ca-promoted preparations (Ca/Pd=2 at./at.) where calcium was added either to the prereduced Pd crystallites or to the diammine palladium complex, were studied by FTIR at 298–653 K. On the support, HCOOH is mostly adsorbed molecularly at room temperature, with partial dimerization, condensation and extensive hydrogen bonding, but readily decomposes, on the Pd crystallites of Pd/SiO2, via decarbonylation, to give CO multicoordinated to the metal surface, and water. With heating, formic acid decomposition is accompanied by some water gas shift as well, while CO reacts to give methyl (methane) and methoxy. Calcium promotion to both the prereduced Pd and its diammine complex precursor, enhanced HCOOH decomposition onto the catalyst surface, even at 298 K. Together with sorbed HCOOH and chemisorbed CO, mono- and bidentate formates were observed on these materials, owing to the incorporation of well-dispersed CaOxHy. These formates were readily decomposed by atomic hydrogen produced by decarbonylation/WGS of formic acid on Pd. At increasing temperatures, some carbonates (polydentate and simple) were formed, but hardly any methane was detected. On Ca–Pd/SiO2 with calcium added to prereduced Pd metal particles the extension and/or onset of all these processes was more straightforward than on the promoted Ca–Pd/SiO2 where calcium was added to diammine palladium instead, most likely owing to the combined impact of a higher dispersion of the Pd crystallites on the former preparation, and calcium oxyhydroxide decoration (CaOxHy) of the metal particles on the latter, which hamper H-spillover from them.
Fil: Cabilla, Griselda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Bonivardi, Adrian Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Baltanas, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description The adsorption and decomposition of formic acid on a highly dispersed supported Pd/SiO2 catalyst (2 wt.% Pd) prepared via ion exchange (IE) of [Pd(NH3)4]2+ in alkaline solution, together with two Ca-promoted preparations (Ca/Pd=2 at./at.) where calcium was added either to the prereduced Pd crystallites or to the diammine palladium complex, were studied by FTIR at 298–653 K. On the support, HCOOH is mostly adsorbed molecularly at room temperature, with partial dimerization, condensation and extensive hydrogen bonding, but readily decomposes, on the Pd crystallites of Pd/SiO2, via decarbonylation, to give CO multicoordinated to the metal surface, and water. With heating, formic acid decomposition is accompanied by some water gas shift as well, while CO reacts to give methyl (methane) and methoxy. Calcium promotion to both the prereduced Pd and its diammine complex precursor, enhanced HCOOH decomposition onto the catalyst surface, even at 298 K. Together with sorbed HCOOH and chemisorbed CO, mono- and bidentate formates were observed on these materials, owing to the incorporation of well-dispersed CaOxHy. These formates were readily decomposed by atomic hydrogen produced by decarbonylation/WGS of formic acid on Pd. At increasing temperatures, some carbonates (polydentate and simple) were formed, but hardly any methane was detected. On Ca–Pd/SiO2 with calcium added to prereduced Pd metal particles the extension and/or onset of all these processes was more straightforward than on the promoted Ca–Pd/SiO2 where calcium was added to diammine palladium instead, most likely owing to the combined impact of a higher dispersion of the Pd crystallites on the former preparation, and calcium oxyhydroxide decoration (CaOxHy) of the metal particles on the latter, which hamper H-spillover from them.
publishDate 2003
dc.date.none.fl_str_mv 2003-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/27370
Cabilla, Griselda; Bonivardi, Adrian Lionel; Baltanas, Miguel Angel; Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts; Elsevier Science; Applied Catalysis A: General; 255; 12-2003; 181-195
0926-860X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/27370
identifier_str_mv Cabilla, Griselda; Bonivardi, Adrian Lionel; Baltanas, Miguel Angel; Infrared Study of the Absorption of Formic Acid on Clean and Ca-promoted Pd/SiO2 Catalysts; Elsevier Science; Applied Catalysis A: General; 255; 12-2003; 181-195
0926-860X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0926-860X(03)00546-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614096782098432
score 13.070432