Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness

Autores
Speyer, Kevin; Pastorino, Claudio
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the influence of chain stiffness on droplet flow in a nano-channel, coated with semiflexible hydrophobic polymers by means of non-equilibrium molecular-dynamics simulations. The studied system is then a moving droplet in the slit channel, coexisting with its vapor and subjected to periodic boundary conditions in the flow direction. The polymer chains, grafted by the terminal bead to the confining walls, are described by a coarse-grained model that accounts for chain connectivity, excluded volume interactions and local chain stiffness. The rheological, frictional and dynamical properties of the brush are explored over a wide range of persistence lengths. We find a rich behavior of polymer conformations and concomitant changes in the friction properties over the wide range of studied polymer stiffnesses. A rapid decrease in the droplet velocity was observed as the rigidity of the chains is increased for polymers whose persistence length is smaller than their contour length. We find a strong relation between the internal dynamics of the brush and the droplet transport properties, which could be used to tailor flow properties by surface functionalization. The monomers of the brush layer, under the droplet, present a collective ?treadmill belt? like dynamics which can only be present due the the existence of grafted chains. We describe its changes in spatial extension upon variations of polymer stiffness, with bidimensional velocity and density profiles. The deformation of the polymer brushes due to the presence of the droplet is analyzed in detail. Lastly, The droplet-gas interaction is studied by varying the liquid to gas ratio, observing a 16% speed increase for droplets that flow close to each other, compared to a train of droplets that present a large gap between consecutive droplets.
Fil: Speyer, Kevin. Universidad de Buenos Aires; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pastorino, Claudio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
POLYMER
BRUSHES
MICROFLUIDICS
FRICTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41127

id CONICETDig_d3b233274813cdc0add2c63c28702cce
oai_identifier_str oai:ri.conicet.gov.ar:11336/41127
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffnessSpeyer, KevinPastorino, ClaudioPOLYMERBRUSHESMICROFLUIDICSFRICTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the influence of chain stiffness on droplet flow in a nano-channel, coated with semiflexible hydrophobic polymers by means of non-equilibrium molecular-dynamics simulations. The studied system is then a moving droplet in the slit channel, coexisting with its vapor and subjected to periodic boundary conditions in the flow direction. The polymer chains, grafted by the terminal bead to the confining walls, are described by a coarse-grained model that accounts for chain connectivity, excluded volume interactions and local chain stiffness. The rheological, frictional and dynamical properties of the brush are explored over a wide range of persistence lengths. We find a rich behavior of polymer conformations and concomitant changes in the friction properties over the wide range of studied polymer stiffnesses. A rapid decrease in the droplet velocity was observed as the rigidity of the chains is increased for polymers whose persistence length is smaller than their contour length. We find a strong relation between the internal dynamics of the brush and the droplet transport properties, which could be used to tailor flow properties by surface functionalization. The monomers of the brush layer, under the droplet, present a collective ?treadmill belt? like dynamics which can only be present due the the existence of grafted chains. We describe its changes in spatial extension upon variations of polymer stiffness, with bidimensional velocity and density profiles. The deformation of the polymer brushes due to the presence of the droplet is analyzed in detail. Lastly, The droplet-gas interaction is studied by varying the liquid to gas ratio, observing a 16% speed increase for droplets that flow close to each other, compared to a train of droplets that present a large gap between consecutive droplets.Fil: Speyer, Kevin. Universidad de Buenos Aires; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pastorino, Claudio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Chemical Society2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41127Speyer, Kevin; Pastorino, Claudio; Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness; American Chemical Society; Langmuir; 23; 40; 9-2017; 10753-107630743-7463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.langmuir.7b02640info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.langmuir.7b02640info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:01Zoai:ri.conicet.gov.ar:11336/41127instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:02.235CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
title Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
spellingShingle Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
Speyer, Kevin
POLYMER
BRUSHES
MICROFLUIDICS
FRICTION
title_short Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
title_full Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
title_fullStr Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
title_full_unstemmed Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
title_sort Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness
dc.creator.none.fl_str_mv Speyer, Kevin
Pastorino, Claudio
author Speyer, Kevin
author_facet Speyer, Kevin
Pastorino, Claudio
author_role author
author2 Pastorino, Claudio
author2_role author
dc.subject.none.fl_str_mv POLYMER
BRUSHES
MICROFLUIDICS
FRICTION
topic POLYMER
BRUSHES
MICROFLUIDICS
FRICTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the influence of chain stiffness on droplet flow in a nano-channel, coated with semiflexible hydrophobic polymers by means of non-equilibrium molecular-dynamics simulations. The studied system is then a moving droplet in the slit channel, coexisting with its vapor and subjected to periodic boundary conditions in the flow direction. The polymer chains, grafted by the terminal bead to the confining walls, are described by a coarse-grained model that accounts for chain connectivity, excluded volume interactions and local chain stiffness. The rheological, frictional and dynamical properties of the brush are explored over a wide range of persistence lengths. We find a rich behavior of polymer conformations and concomitant changes in the friction properties over the wide range of studied polymer stiffnesses. A rapid decrease in the droplet velocity was observed as the rigidity of the chains is increased for polymers whose persistence length is smaller than their contour length. We find a strong relation between the internal dynamics of the brush and the droplet transport properties, which could be used to tailor flow properties by surface functionalization. The monomers of the brush layer, under the droplet, present a collective ?treadmill belt? like dynamics which can only be present due the the existence of grafted chains. We describe its changes in spatial extension upon variations of polymer stiffness, with bidimensional velocity and density profiles. The deformation of the polymer brushes due to the presence of the droplet is analyzed in detail. Lastly, The droplet-gas interaction is studied by varying the liquid to gas ratio, observing a 16% speed increase for droplets that flow close to each other, compared to a train of droplets that present a large gap between consecutive droplets.
Fil: Speyer, Kevin. Universidad de Buenos Aires; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pastorino, Claudio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study the influence of chain stiffness on droplet flow in a nano-channel, coated with semiflexible hydrophobic polymers by means of non-equilibrium molecular-dynamics simulations. The studied system is then a moving droplet in the slit channel, coexisting with its vapor and subjected to periodic boundary conditions in the flow direction. The polymer chains, grafted by the terminal bead to the confining walls, are described by a coarse-grained model that accounts for chain connectivity, excluded volume interactions and local chain stiffness. The rheological, frictional and dynamical properties of the brush are explored over a wide range of persistence lengths. We find a rich behavior of polymer conformations and concomitant changes in the friction properties over the wide range of studied polymer stiffnesses. A rapid decrease in the droplet velocity was observed as the rigidity of the chains is increased for polymers whose persistence length is smaller than their contour length. We find a strong relation between the internal dynamics of the brush and the droplet transport properties, which could be used to tailor flow properties by surface functionalization. The monomers of the brush layer, under the droplet, present a collective ?treadmill belt? like dynamics which can only be present due the the existence of grafted chains. We describe its changes in spatial extension upon variations of polymer stiffness, with bidimensional velocity and density profiles. The deformation of the polymer brushes due to the presence of the droplet is analyzed in detail. Lastly, The droplet-gas interaction is studied by varying the liquid to gas ratio, observing a 16% speed increase for droplets that flow close to each other, compared to a train of droplets that present a large gap between consecutive droplets.
publishDate 2017
dc.date.none.fl_str_mv 2017-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41127
Speyer, Kevin; Pastorino, Claudio; Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness; American Chemical Society; Langmuir; 23; 40; 9-2017; 10753-10763
0743-7463
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41127
identifier_str_mv Speyer, Kevin; Pastorino, Claudio; Droplet transport in a nanochannel coated by hydrophobic semiflexible polymer brushes: the effect of chain stiffness; American Chemical Society; Langmuir; 23; 40; 9-2017; 10753-10763
0743-7463
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.langmuir.7b02640
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.langmuir.7b02640
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614023957446656
score 13.070432