Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moist...

Autores
Muñoz, Ariel A.; Barichivich, Jonathan; Christie, Duncan A.; Dorigo, Wuoter; Sauchyn, David; Gonzalez Reyes, Alvaro; Villalba, Ricardo; Lara, Antonio; Riquelme, Natalia; González, Mauro
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Araucaria araucana (Araucaria) is a long-lived conifer growing along a sharp west–east biophysical gradient in the Patagonian Andes. The patterns and climate drivers of Araucaria growth have typically been documented on the driest part of the gradient relying on correlations with meteorological records, but the lack of in situ soil moisture observations has precluded an assessment of the growth responses to soil moisture variability. Here, we use a network of 21 tree-ring width chronologies to investigate the spatiotemporal patterns of tree growth through the entire gradient and evaluate their linkages with regional climate and satellite-observed surface soil moisture variability. We found that temporal variations in tree growth are remarkably similar throughout the gradient and largely driven by soil moisture variability. The regional spatiotemporal pattern of tree growth was positively correlated with precipitation (r = 0.35 for January 1920–1974; P < 0.01) and predominantly negatively correlated with temperature (r = −0.38 for January–March 1920–1974; P <  0.01) during the previous growing season. These correlations suggest a temporally lagged growth response to summer moisture that could be associated with known physiological carry-over processes in conifers and to a response to moisture variability at deeper layers of the rooting zone. Notably, satellite observations revealed a previously unobserved response of Araucaria growth to summer surface soil moisture during the current rather than the previous growing season (r = 0.65 for 1979–2000; P <  0.05). This new response has a large spatial footprint across the mid-latitudes of the South American continent (35°–45°S) and highlights the potential of Araucaria tree rings for palaeoclimatic applications. The strong moisture constraint on tree growth revealed by satellite observations suggests that projected summer drying during the coming decades may result in regional growth declines in Araucaria forests and other water-limited ecosystems in the Patagonian Andes.
Fil: Muñoz, Ariel A.. Universidad Técnica Federico Santa María. Centro de Tecnologías Ambientales; Chile. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Universidad Austral de Chile. Centro de Estudios Ambientales; Chile
Fil: Barichivich, Jonathan. University of East Anglia. School of Environmental Sciences. Climatic Research Unit; Reino Unido
Fil: Christie, Duncan A.. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; Chile
Fil: Dorigo, Wuoter. Vienna University of Technology. Institute of Photogrammetry and Remote Sensing; Austria
Fil: Sauchyn, David. University of Regina. Prairie Adaptation Research Collaborative; Canadá
Fil: Gonzalez Reyes, Alvaro. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chile
Fil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Lara, Antonio. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; Chile
Fil: Riquelme, Natalia. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile
Fil: González, Mauro. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; Chile
Materia
Drought
Patagonia
Remote Seising
Soil Moisture
Tree Ring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3014

id CONICETDig_d3a372b1412bd9f0572ee7f74831af89
oai_identifier_str oai:ri.conicet.gov.ar:11336/3014
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moistureMuñoz, Ariel A.Barichivich, JonathanChristie, Duncan A.Dorigo, WuoterSauchyn, DavidGonzalez Reyes, AlvaroVillalba, RicardoLara, AntonioRiquelme, NataliaGonzález, MauroDroughtPatagoniaRemote SeisingSoil MoistureTree Ringhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Araucaria araucana (Araucaria) is a long-lived conifer growing along a sharp west–east biophysical gradient in the Patagonian Andes. The patterns and climate drivers of Araucaria growth have typically been documented on the driest part of the gradient relying on correlations with meteorological records, but the lack of in situ soil moisture observations has precluded an assessment of the growth responses to soil moisture variability. Here, we use a network of 21 tree-ring width chronologies to investigate the spatiotemporal patterns of tree growth through the entire gradient and evaluate their linkages with regional climate and satellite-observed surface soil moisture variability. We found that temporal variations in tree growth are remarkably similar throughout the gradient and largely driven by soil moisture variability. The regional spatiotemporal pattern of tree growth was positively correlated with precipitation (r = 0.35 for January 1920–1974; P < 0.01) and predominantly negatively correlated with temperature (r = −0.38 for January–March 1920–1974; P <  0.01) during the previous growing season. These correlations suggest a temporally lagged growth response to summer moisture that could be associated with known physiological carry-over processes in conifers and to a response to moisture variability at deeper layers of the rooting zone. Notably, satellite observations revealed a previously unobserved response of Araucaria growth to summer surface soil moisture during the current rather than the previous growing season (r = 0.65 for 1979–2000; P <  0.05). This new response has a large spatial footprint across the mid-latitudes of the South American continent (35°–45°S) and highlights the potential of Araucaria tree rings for palaeoclimatic applications. The strong moisture constraint on tree growth revealed by satellite observations suggests that projected summer drying during the coming decades may result in regional growth declines in Araucaria forests and other water-limited ecosystems in the Patagonian Andes.Fil: Muñoz, Ariel A.. Universidad Técnica Federico Santa María. Centro de Tecnologías Ambientales; Chile. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Universidad Austral de Chile. Centro de Estudios Ambientales; ChileFil: Barichivich, Jonathan. University of East Anglia. School of Environmental Sciences. Climatic Research Unit; Reino UnidoFil: Christie, Duncan A.. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; ChileFil: Dorigo, Wuoter. Vienna University of Technology. Institute of Photogrammetry and Remote Sensing; AustriaFil: Sauchyn, David. University of Regina. Prairie Adaptation Research Collaborative; CanadáFil: Gonzalez Reyes, Alvaro. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; ChileFil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Lara, Antonio. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; ChileFil: Riquelme, Natalia. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; ChileFil: González, Mauro. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; ChileWiley2013-06-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3014Muñoz, Ariel A.; Barichivich, Jonathan; Christie, Duncan A.; Dorigo, Wuoter; Sauchyn, David; et al.; Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture; Wiley; Austral Ecology; 39; 2; 13-6-2013; 158-1691442-9985enginfo:eu-repo/semantics/altIdentifier/issn/1442-9985info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/aec.12054/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1111/aec.12054info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:54:36Zoai:ri.conicet.gov.ar:11336/3014instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:54:36.906CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
title Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
spellingShingle Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
Muñoz, Ariel A.
Drought
Patagonia
Remote Seising
Soil Moisture
Tree Ring
title_short Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
title_full Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
title_fullStr Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
title_full_unstemmed Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
title_sort Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture
dc.creator.none.fl_str_mv Muñoz, Ariel A.
Barichivich, Jonathan
Christie, Duncan A.
Dorigo, Wuoter
Sauchyn, David
Gonzalez Reyes, Alvaro
Villalba, Ricardo
Lara, Antonio
Riquelme, Natalia
González, Mauro
author Muñoz, Ariel A.
author_facet Muñoz, Ariel A.
Barichivich, Jonathan
Christie, Duncan A.
Dorigo, Wuoter
Sauchyn, David
Gonzalez Reyes, Alvaro
Villalba, Ricardo
Lara, Antonio
Riquelme, Natalia
González, Mauro
author_role author
author2 Barichivich, Jonathan
Christie, Duncan A.
Dorigo, Wuoter
Sauchyn, David
Gonzalez Reyes, Alvaro
Villalba, Ricardo
Lara, Antonio
Riquelme, Natalia
González, Mauro
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Drought
Patagonia
Remote Seising
Soil Moisture
Tree Ring
topic Drought
Patagonia
Remote Seising
Soil Moisture
Tree Ring
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Araucaria araucana (Araucaria) is a long-lived conifer growing along a sharp west–east biophysical gradient in the Patagonian Andes. The patterns and climate drivers of Araucaria growth have typically been documented on the driest part of the gradient relying on correlations with meteorological records, but the lack of in situ soil moisture observations has precluded an assessment of the growth responses to soil moisture variability. Here, we use a network of 21 tree-ring width chronologies to investigate the spatiotemporal patterns of tree growth through the entire gradient and evaluate their linkages with regional climate and satellite-observed surface soil moisture variability. We found that temporal variations in tree growth are remarkably similar throughout the gradient and largely driven by soil moisture variability. The regional spatiotemporal pattern of tree growth was positively correlated with precipitation (r = 0.35 for January 1920–1974; P < 0.01) and predominantly negatively correlated with temperature (r = −0.38 for January–March 1920–1974; P <  0.01) during the previous growing season. These correlations suggest a temporally lagged growth response to summer moisture that could be associated with known physiological carry-over processes in conifers and to a response to moisture variability at deeper layers of the rooting zone. Notably, satellite observations revealed a previously unobserved response of Araucaria growth to summer surface soil moisture during the current rather than the previous growing season (r = 0.65 for 1979–2000; P <  0.05). This new response has a large spatial footprint across the mid-latitudes of the South American continent (35°–45°S) and highlights the potential of Araucaria tree rings for palaeoclimatic applications. The strong moisture constraint on tree growth revealed by satellite observations suggests that projected summer drying during the coming decades may result in regional growth declines in Araucaria forests and other water-limited ecosystems in the Patagonian Andes.
Fil: Muñoz, Ariel A.. Universidad Técnica Federico Santa María. Centro de Tecnologías Ambientales; Chile. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Universidad Austral de Chile. Centro de Estudios Ambientales; Chile
Fil: Barichivich, Jonathan. University of East Anglia. School of Environmental Sciences. Climatic Research Unit; Reino Unido
Fil: Christie, Duncan A.. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; Chile
Fil: Dorigo, Wuoter. Vienna University of Technology. Institute of Photogrammetry and Remote Sensing; Austria
Fil: Sauchyn, David. University of Regina. Prairie Adaptation Research Collaborative; Canadá
Fil: Gonzalez Reyes, Alvaro. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chile
Fil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Lara, Antonio. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; Chile
Fil: Riquelme, Natalia. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile
Fil: González, Mauro. Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Conservación Biodiversidad y Territorio. Laboratorio de Dendrocronología y Cambio Global; Chile. Center for Climate and Resilience Research; Chile
description Araucaria araucana (Araucaria) is a long-lived conifer growing along a sharp west–east biophysical gradient in the Patagonian Andes. The patterns and climate drivers of Araucaria growth have typically been documented on the driest part of the gradient relying on correlations with meteorological records, but the lack of in situ soil moisture observations has precluded an assessment of the growth responses to soil moisture variability. Here, we use a network of 21 tree-ring width chronologies to investigate the spatiotemporal patterns of tree growth through the entire gradient and evaluate their linkages with regional climate and satellite-observed surface soil moisture variability. We found that temporal variations in tree growth are remarkably similar throughout the gradient and largely driven by soil moisture variability. The regional spatiotemporal pattern of tree growth was positively correlated with precipitation (r = 0.35 for January 1920–1974; P < 0.01) and predominantly negatively correlated with temperature (r = −0.38 for January–March 1920–1974; P <  0.01) during the previous growing season. These correlations suggest a temporally lagged growth response to summer moisture that could be associated with known physiological carry-over processes in conifers and to a response to moisture variability at deeper layers of the rooting zone. Notably, satellite observations revealed a previously unobserved response of Araucaria growth to summer surface soil moisture during the current rather than the previous growing season (r = 0.65 for 1979–2000; P <  0.05). This new response has a large spatial footprint across the mid-latitudes of the South American continent (35°–45°S) and highlights the potential of Araucaria tree rings for palaeoclimatic applications. The strong moisture constraint on tree growth revealed by satellite observations suggests that projected summer drying during the coming decades may result in regional growth declines in Araucaria forests and other water-limited ecosystems in the Patagonian Andes.
publishDate 2013
dc.date.none.fl_str_mv 2013-06-13
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3014
Muñoz, Ariel A.; Barichivich, Jonathan; Christie, Duncan A.; Dorigo, Wuoter; Sauchyn, David; et al.; Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture; Wiley; Austral Ecology; 39; 2; 13-6-2013; 158-169
1442-9985
url http://hdl.handle.net/11336/3014
identifier_str_mv Muñoz, Ariel A.; Barichivich, Jonathan; Christie, Duncan A.; Dorigo, Wuoter; Sauchyn, David; et al.; Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture; Wiley; Austral Ecology; 39; 2; 13-6-2013; 158-169
1442-9985
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1442-9985
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/aec.12054/abstract
info:eu-repo/semantics/altIdentifier/doi/10.1111/aec.12054
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782245418827776
score 12.982451