Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors

Autores
Cismondi Duarte, Martín
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Despite the fact that many publications have dealt with asphaltene onset pressure (AOP) lines during the last 2 or 3 decades, no explicit method for tracing these and other related boundaries from equation of state (EoS) models has been proposed in the literature. In this work, a new integral algorithmic strategy for the construction of complete phase envelope diagrams based on an EoS is presented. The method of Michelsen for tracing two-phase boundaries is used, while for three-phase saturation lines, an equivalent method was designed, including a second set of K factors and a phase fraction as extra independent variables. The double-saturation point is defined, and its importance is highlighted, from both phase behavior and algorithmic perspectives. Specific issues as recognition of unstable segments, such as false bubble curves, are also discussed. Three different fluids from the literature are taken as case studies to illustrate the application of the proposed strategy and discuss different types of behavior. In particular, an unexpected second three-phase region was predicted at higher temperatures in two of the three cases studied. This could serve as inspiration for new experimental studies, to see whether the existence of such a region can be confirmed for some reservoir fluids, or it could be just an artificial behavior predicted by the models. In summary, computer codes based on the proposed strategy might become a useful tool for researchers or professionals dealing with asphaltene phase behavior in reservoir fluids.
Fil: Cismondi Duarte, Martín. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina
Materia
Phase envelopes
Reservoir fluids
Asphaltenes
Three-phase behavior
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/90510

id CONICETDig_d34e5e723482b9cd0b195b6f17a7a833
oai_identifier_str oai:ri.conicet.gov.ar:11336/90510
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviorsCismondi Duarte, MartínPhase envelopesReservoir fluidsAsphaltenesThree-phase behaviorhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Despite the fact that many publications have dealt with asphaltene onset pressure (AOP) lines during the last 2 or 3 decades, no explicit method for tracing these and other related boundaries from equation of state (EoS) models has been proposed in the literature. In this work, a new integral algorithmic strategy for the construction of complete phase envelope diagrams based on an EoS is presented. The method of Michelsen for tracing two-phase boundaries is used, while for three-phase saturation lines, an equivalent method was designed, including a second set of K factors and a phase fraction as extra independent variables. The double-saturation point is defined, and its importance is highlighted, from both phase behavior and algorithmic perspectives. Specific issues as recognition of unstable segments, such as false bubble curves, are also discussed. Three different fluids from the literature are taken as case studies to illustrate the application of the proposed strategy and discuss different types of behavior. In particular, an unexpected second three-phase region was predicted at higher temperatures in two of the three cases studied. This could serve as inspiration for new experimental studies, to see whether the existence of such a region can be confirmed for some reservoir fluids, or it could be just an artificial behavior predicted by the models. In summary, computer codes based on the proposed strategy might become a useful tool for researchers or professionals dealing with asphaltene phase behavior in reservoir fluids.Fil: Cismondi Duarte, Martín. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; ArgentinaAmerican Chemical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90510Cismondi Duarte, Martín; Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors; American Chemical Society; Energy & Fuels (print); 32; 3; 1-2018; 2742-27480887-06241520-5029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.energyfuels.7b02790info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.energyfuels.7b02790info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:17Zoai:ri.conicet.gov.ar:11336/90510instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:17.659CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
title Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
spellingShingle Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
Cismondi Duarte, Martín
Phase envelopes
Reservoir fluids
Asphaltenes
Three-phase behavior
title_short Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
title_full Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
title_fullStr Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
title_full_unstemmed Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
title_sort Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors
dc.creator.none.fl_str_mv Cismondi Duarte, Martín
author Cismondi Duarte, Martín
author_facet Cismondi Duarte, Martín
author_role author
dc.subject.none.fl_str_mv Phase envelopes
Reservoir fluids
Asphaltenes
Three-phase behavior
topic Phase envelopes
Reservoir fluids
Asphaltenes
Three-phase behavior
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Despite the fact that many publications have dealt with asphaltene onset pressure (AOP) lines during the last 2 or 3 decades, no explicit method for tracing these and other related boundaries from equation of state (EoS) models has been proposed in the literature. In this work, a new integral algorithmic strategy for the construction of complete phase envelope diagrams based on an EoS is presented. The method of Michelsen for tracing two-phase boundaries is used, while for three-phase saturation lines, an equivalent method was designed, including a second set of K factors and a phase fraction as extra independent variables. The double-saturation point is defined, and its importance is highlighted, from both phase behavior and algorithmic perspectives. Specific issues as recognition of unstable segments, such as false bubble curves, are also discussed. Three different fluids from the literature are taken as case studies to illustrate the application of the proposed strategy and discuss different types of behavior. In particular, an unexpected second three-phase region was predicted at higher temperatures in two of the three cases studied. This could serve as inspiration for new experimental studies, to see whether the existence of such a region can be confirmed for some reservoir fluids, or it could be just an artificial behavior predicted by the models. In summary, computer codes based on the proposed strategy might become a useful tool for researchers or professionals dealing with asphaltene phase behavior in reservoir fluids.
Fil: Cismondi Duarte, Martín. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina
description Despite the fact that many publications have dealt with asphaltene onset pressure (AOP) lines during the last 2 or 3 decades, no explicit method for tracing these and other related boundaries from equation of state (EoS) models has been proposed in the literature. In this work, a new integral algorithmic strategy for the construction of complete phase envelope diagrams based on an EoS is presented. The method of Michelsen for tracing two-phase boundaries is used, while for three-phase saturation lines, an equivalent method was designed, including a second set of K factors and a phase fraction as extra independent variables. The double-saturation point is defined, and its importance is highlighted, from both phase behavior and algorithmic perspectives. Specific issues as recognition of unstable segments, such as false bubble curves, are also discussed. Three different fluids from the literature are taken as case studies to illustrate the application of the proposed strategy and discuss different types of behavior. In particular, an unexpected second three-phase region was predicted at higher temperatures in two of the three cases studied. This could serve as inspiration for new experimental studies, to see whether the existence of such a region can be confirmed for some reservoir fluids, or it could be just an artificial behavior predicted by the models. In summary, computer codes based on the proposed strategy might become a useful tool for researchers or professionals dealing with asphaltene phase behavior in reservoir fluids.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/90510
Cismondi Duarte, Martín; Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors; American Chemical Society; Energy & Fuels (print); 32; 3; 1-2018; 2742-2748
0887-0624
1520-5029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/90510
identifier_str_mv Cismondi Duarte, Martín; Phaseenvelopes for reservoir fluids with asphaltene onset lines: An integral computation strategy for complex combinations of two- and three phase behaviors; American Chemical Society; Energy & Fuels (print); 32; 3; 1-2018; 2742-2748
0887-0624
1520-5029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.energyfuels.7b02790
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.energyfuels.7b02790
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613333032894464
score 13.070432