TASEP hydrodynamics using microscopic characteristics

Autores
Ferrari, Pablo Augusto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88599

id CONICETDig_d32dd2588377870ce6fd7a9fe509e493
oai_identifier_str oai:ri.conicet.gov.ar:11336/88599
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling TASEP hydrodynamics using microscopic characteristicsFerrari, Pablo AugustoTOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaInstitute of Mathematical Statistics2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88599Ferrari, Pablo Augusto; TASEP hydrodynamics using microscopic characteristics; Institute of Mathematical Statistics; Probability Surveys; 15; 1-2018; 1-271549-5787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1214/17-PS284info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ps/1519722018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:08:51Zoai:ri.conicet.gov.ar:11336/88599instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:08:51.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv TASEP hydrodynamics using microscopic characteristics
title TASEP hydrodynamics using microscopic characteristics
spellingShingle TASEP hydrodynamics using microscopic characteristics
Ferrari, Pablo Augusto
TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
title_short TASEP hydrodynamics using microscopic characteristics
title_full TASEP hydrodynamics using microscopic characteristics
title_fullStr TASEP hydrodynamics using microscopic characteristics
title_full_unstemmed TASEP hydrodynamics using microscopic characteristics
title_sort TASEP hydrodynamics using microscopic characteristics
dc.creator.none.fl_str_mv Ferrari, Pablo Augusto
author Ferrari, Pablo Augusto
author_facet Ferrari, Pablo Augusto
author_role author
dc.subject.none.fl_str_mv TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
topic TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88599
Ferrari, Pablo Augusto; TASEP hydrodynamics using microscopic characteristics; Institute of Mathematical Statistics; Probability Surveys; 15; 1-2018; 1-27
1549-5787
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88599
identifier_str_mv Ferrari, Pablo Augusto; TASEP hydrodynamics using microscopic characteristics; Institute of Mathematical Statistics; Probability Surveys; 15; 1-2018; 1-27
1549-5787
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1214/17-PS284
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ps/1519722018
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Mathematical Statistics
publisher.none.fl_str_mv Institute of Mathematical Statistics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781425441832960
score 12.982451