TASEP hydrodynamics using microscopic characteristics
- Autores
- Ferrari, Pablo Augusto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
- TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88599
Ver los metadatos del registro completo
| id |
CONICETDig_d32dd2588377870ce6fd7a9fe509e493 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88599 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
TASEP hydrodynamics using microscopic characteristicsFerrari, Pablo AugustoTOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaInstitute of Mathematical Statistics2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88599Ferrari, Pablo Augusto; TASEP hydrodynamics using microscopic characteristics; Institute of Mathematical Statistics; Probability Surveys; 15; 1-2018; 1-271549-5787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1214/17-PS284info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ps/1519722018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:08:51Zoai:ri.conicet.gov.ar:11336/88599instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:08:51.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
TASEP hydrodynamics using microscopic characteristics |
| title |
TASEP hydrodynamics using microscopic characteristics |
| spellingShingle |
TASEP hydrodynamics using microscopic characteristics Ferrari, Pablo Augusto TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS |
| title_short |
TASEP hydrodynamics using microscopic characteristics |
| title_full |
TASEP hydrodynamics using microscopic characteristics |
| title_fullStr |
TASEP hydrodynamics using microscopic characteristics |
| title_full_unstemmed |
TASEP hydrodynamics using microscopic characteristics |
| title_sort |
TASEP hydrodynamics using microscopic characteristics |
| dc.creator.none.fl_str_mv |
Ferrari, Pablo Augusto |
| author |
Ferrari, Pablo Augusto |
| author_facet |
Ferrari, Pablo Augusto |
| author_role |
author |
| dc.subject.none.fl_str_mv |
TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS |
| topic |
TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained. Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88599 Ferrari, Pablo Augusto; TASEP hydrodynamics using microscopic characteristics; Institute of Mathematical Statistics; Probability Surveys; 15; 1-2018; 1-27 1549-5787 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/88599 |
| identifier_str_mv |
Ferrari, Pablo Augusto; TASEP hydrodynamics using microscopic characteristics; Institute of Mathematical Statistics; Probability Surveys; 15; 1-2018; 1-27 1549-5787 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1214/17-PS284 info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ps/1519722018 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
| publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781425441832960 |
| score |
12.982451 |