A global method for calculating plant CSR ecological strategies applied across biomes world-wide
- Autores
- Pierce, Simon; Negreiros, Daniel; Cerabolini, Bruno E. L.; Kattge, Jens; Díaz, Sandra Myrna; Grime, John Philip; Thompson, Ken; Hunt, Roderick; Wilson, Peter J.; Buffa, Gabriella; Nyakunga, Oliver C.; Reich, Peter B.; Caccianiga, Marco; Mangili, Federico; Ceriani, Roberta M.; Luzzaro, Alessandra; Brusa, Guido; Siefert, Andrew; Barbosa, Newton P. U.; Chapin III, Francis Stuart; Cornwell, William K.; Fang, Jingyun; Fernandes, Geraldo Wilson; Garnier, Eric; Le Stradic, Soizig; Peñuelas, Josep; Melo, Felipe P. L.; Slaviero, Antonio; Tabarelli, Marcelo; Tampucci, Duccio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth´s diversity.We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy?environment relationships across biomes world‐wide.Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ?wide geographic coverage, few traits? data set and a ?restricted coverage, many traits? subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations.Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used.Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs).The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy?environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
Fil: Pierce, Simon. University Of Milan; Italia
Fil: Negreiros, Daniel. Universidade Federal de Minas Gerais; Brasil
Fil: Cerabolini, Bruno E. L.. Universidad de Insubria; Italia
Fil: Kattge, Jens. 1max Planck Institute For Biogeochemistr; Alemania
Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Grime, John Philip. University of Sheffield; Reino Unido
Fil: Thompson, Ken. University of Sheffield; Reino Unido
Fil: Hunt, Roderick. University of Exeter; Reino Unido
Fil: Wilson, Peter J.. University of Sheffield; Reino Unido
Fil: Buffa, Gabriella. University Ca’Foscari of Venice; Italia
Fil: Nyakunga, Oliver C.. University Ca’Foscari of Venice; Italia
Fil: Reich, Peter B.. University of Minnesota; Estados Unidos
Fil: Caccianiga, Marco. Università degli Studi di Milano; Italia
Fil: Mangili, Federico. Università degli Studi di Milano; Italia
Fil: Ceriani, Roberta M.. The Native Flora Centre; Italia. Università degli Studi di Milano; Italia
Fil: Luzzaro, Alessandra. Università degli Studi di Milano; Italia
Fil: Brusa, Guido. University of Insubria; Italia
Fil: Siefert, Andrew. University of California at Davis; Estados Unidos
Fil: Barbosa, Newton P. U.. Universidade Federal de Minas Gerais; Brasil
Fil: Chapin III, Francis Stuart. University Of Alaska; Estados Unidos
Fil: Cornwell, William K.. University of New South Wales; Australia
Fil: Fang, Jingyun. The Chinese Academy of Sciences; China
Fil: Fernandes, Geraldo Wilson. Universidade Federal de Minas Gerais; Brasil
Fil: Garnier, Eric. Centre d’Écologie Fonctionnelle et Évolutive; Francia
Fil: Le Stradic, Soizig. Université de Liège; Bélgica
Fil: Peñuelas, Josep. Global Ecology Unit; España
Fil: Melo, Felipe P. L.. Universidade Federal de Pernambuco; Brasil
Fil: Slaviero, Antonio. University Ca’Foscari of Venice; Italia
Fil: Tabarelli, Marcelo. Universidade Federal de Pernambuco; Brasil
Fil: Tampucci, Duccio. Università degli Studi di Milano; Italia - Materia
-
Csr
Ecological Strategies - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52011
Ver los metadatos del registro completo
id |
CONICETDig_d2ba791300a540b5b3315340e88261a8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52011 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A global method for calculating plant CSR ecological strategies applied across biomes world-widePierce, SimonNegreiros, DanielCerabolini, Bruno E. L.Kattge, JensDíaz, Sandra MyrnaGrime, John PhilipThompson, KenHunt, RoderickWilson, Peter J.Buffa, GabriellaNyakunga, Oliver C.Reich, Peter B.Caccianiga, MarcoMangili, FedericoCeriani, Roberta M.Luzzaro, AlessandraBrusa, GuidoSiefert, AndrewBarbosa, Newton P. U.Chapin III, Francis StuartCornwell, William K.Fang, JingyunFernandes, Geraldo WilsonGarnier, EricLe Stradic, SoizigPeñuelas, JosepMelo, Felipe P. L.Slaviero, AntonioTabarelli, MarceloTampucci, DuccioCsrEcological Strategieshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth´s diversity.We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy?environment relationships across biomes world‐wide.Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ?wide geographic coverage, few traits? data set and a ?restricted coverage, many traits? subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations.Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used.Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs).The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy?environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.Fil: Pierce, Simon. University Of Milan; ItaliaFil: Negreiros, Daniel. Universidade Federal de Minas Gerais; BrasilFil: Cerabolini, Bruno E. L.. Universidad de Insubria; ItaliaFil: Kattge, Jens. 1max Planck Institute For Biogeochemistr; AlemaniaFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Grime, John Philip. University of Sheffield; Reino UnidoFil: Thompson, Ken. University of Sheffield; Reino UnidoFil: Hunt, Roderick. University of Exeter; Reino UnidoFil: Wilson, Peter J.. University of Sheffield; Reino UnidoFil: Buffa, Gabriella. University Ca’Foscari of Venice; ItaliaFil: Nyakunga, Oliver C.. University Ca’Foscari of Venice; ItaliaFil: Reich, Peter B.. University of Minnesota; Estados UnidosFil: Caccianiga, Marco. Università degli Studi di Milano; ItaliaFil: Mangili, Federico. Università degli Studi di Milano; ItaliaFil: Ceriani, Roberta M.. The Native Flora Centre; Italia. Università degli Studi di Milano; ItaliaFil: Luzzaro, Alessandra. Università degli Studi di Milano; ItaliaFil: Brusa, Guido. University of Insubria; ItaliaFil: Siefert, Andrew. University of California at Davis; Estados UnidosFil: Barbosa, Newton P. U.. Universidade Federal de Minas Gerais; BrasilFil: Chapin III, Francis Stuart. University Of Alaska; Estados UnidosFil: Cornwell, William K.. University of New South Wales; AustraliaFil: Fang, Jingyun. The Chinese Academy of Sciences; ChinaFil: Fernandes, Geraldo Wilson. Universidade Federal de Minas Gerais; BrasilFil: Garnier, Eric. Centre d’Écologie Fonctionnelle et Évolutive; FranciaFil: Le Stradic, Soizig. Université de Liège; BélgicaFil: Peñuelas, Josep. Global Ecology Unit; EspañaFil: Melo, Felipe P. L.. Universidade Federal de Pernambuco; BrasilFil: Slaviero, Antonio. University Ca’Foscari of Venice; ItaliaFil: Tabarelli, Marcelo. Universidade Federal de Pernambuco; BrasilFil: Tampucci, Duccio. Università degli Studi di Milano; ItaliaWiley Blackwell Publishing, Inc2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/pdfhttp://hdl.handle.net/11336/52011Pierce, Simon; Negreiros, Daniel; Cerabolini, Bruno E. L.; Kattge, Jens; Díaz, Sandra Myrna; et al.; A global method for calculating plant CSR ecological strategies applied across biomes world-wide; Wiley Blackwell Publishing, Inc; Functional Ecology; 31; 8-2016; 444-4570269-84631365-2435CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2435info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12722info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:12Zoai:ri.conicet.gov.ar:11336/52011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:13.106CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
title |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
spellingShingle |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide Pierce, Simon Csr Ecological Strategies |
title_short |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
title_full |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
title_fullStr |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
title_full_unstemmed |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
title_sort |
A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
dc.creator.none.fl_str_mv |
Pierce, Simon Negreiros, Daniel Cerabolini, Bruno E. L. Kattge, Jens Díaz, Sandra Myrna Grime, John Philip Thompson, Ken Hunt, Roderick Wilson, Peter J. Buffa, Gabriella Nyakunga, Oliver C. Reich, Peter B. Caccianiga, Marco Mangili, Federico Ceriani, Roberta M. Luzzaro, Alessandra Brusa, Guido Siefert, Andrew Barbosa, Newton P. U. Chapin III, Francis Stuart Cornwell, William K. Fang, Jingyun Fernandes, Geraldo Wilson Garnier, Eric Le Stradic, Soizig Peñuelas, Josep Melo, Felipe P. L. Slaviero, Antonio Tabarelli, Marcelo Tampucci, Duccio |
author |
Pierce, Simon |
author_facet |
Pierce, Simon Negreiros, Daniel Cerabolini, Bruno E. L. Kattge, Jens Díaz, Sandra Myrna Grime, John Philip Thompson, Ken Hunt, Roderick Wilson, Peter J. Buffa, Gabriella Nyakunga, Oliver C. Reich, Peter B. Caccianiga, Marco Mangili, Federico Ceriani, Roberta M. Luzzaro, Alessandra Brusa, Guido Siefert, Andrew Barbosa, Newton P. U. Chapin III, Francis Stuart Cornwell, William K. Fang, Jingyun Fernandes, Geraldo Wilson Garnier, Eric Le Stradic, Soizig Peñuelas, Josep Melo, Felipe P. L. Slaviero, Antonio Tabarelli, Marcelo Tampucci, Duccio |
author_role |
author |
author2 |
Negreiros, Daniel Cerabolini, Bruno E. L. Kattge, Jens Díaz, Sandra Myrna Grime, John Philip Thompson, Ken Hunt, Roderick Wilson, Peter J. Buffa, Gabriella Nyakunga, Oliver C. Reich, Peter B. Caccianiga, Marco Mangili, Federico Ceriani, Roberta M. Luzzaro, Alessandra Brusa, Guido Siefert, Andrew Barbosa, Newton P. U. Chapin III, Francis Stuart Cornwell, William K. Fang, Jingyun Fernandes, Geraldo Wilson Garnier, Eric Le Stradic, Soizig Peñuelas, Josep Melo, Felipe P. L. Slaviero, Antonio Tabarelli, Marcelo Tampucci, Duccio |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Csr Ecological Strategies |
topic |
Csr Ecological Strategies |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth´s diversity.We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy?environment relationships across biomes world‐wide.Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ?wide geographic coverage, few traits? data set and a ?restricted coverage, many traits? subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations.Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used.Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs).The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy?environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Fil: Pierce, Simon. University Of Milan; Italia Fil: Negreiros, Daniel. Universidade Federal de Minas Gerais; Brasil Fil: Cerabolini, Bruno E. L.. Universidad de Insubria; Italia Fil: Kattge, Jens. 1max Planck Institute For Biogeochemistr; Alemania Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Grime, John Philip. University of Sheffield; Reino Unido Fil: Thompson, Ken. University of Sheffield; Reino Unido Fil: Hunt, Roderick. University of Exeter; Reino Unido Fil: Wilson, Peter J.. University of Sheffield; Reino Unido Fil: Buffa, Gabriella. University Ca’Foscari of Venice; Italia Fil: Nyakunga, Oliver C.. University Ca’Foscari of Venice; Italia Fil: Reich, Peter B.. University of Minnesota; Estados Unidos Fil: Caccianiga, Marco. Università degli Studi di Milano; Italia Fil: Mangili, Federico. Università degli Studi di Milano; Italia Fil: Ceriani, Roberta M.. The Native Flora Centre; Italia. Università degli Studi di Milano; Italia Fil: Luzzaro, Alessandra. Università degli Studi di Milano; Italia Fil: Brusa, Guido. University of Insubria; Italia Fil: Siefert, Andrew. University of California at Davis; Estados Unidos Fil: Barbosa, Newton P. U.. Universidade Federal de Minas Gerais; Brasil Fil: Chapin III, Francis Stuart. University Of Alaska; Estados Unidos Fil: Cornwell, William K.. University of New South Wales; Australia Fil: Fang, Jingyun. The Chinese Academy of Sciences; China Fil: Fernandes, Geraldo Wilson. Universidade Federal de Minas Gerais; Brasil Fil: Garnier, Eric. Centre d’Écologie Fonctionnelle et Évolutive; Francia Fil: Le Stradic, Soizig. Université de Liège; Bélgica Fil: Peñuelas, Josep. Global Ecology Unit; España Fil: Melo, Felipe P. L.. Universidade Federal de Pernambuco; Brasil Fil: Slaviero, Antonio. University Ca’Foscari of Venice; Italia Fil: Tabarelli, Marcelo. Universidade Federal de Pernambuco; Brasil Fil: Tampucci, Duccio. Università degli Studi di Milano; Italia |
description |
Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth´s diversity.We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy?environment relationships across biomes world‐wide.Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ?wide geographic coverage, few traits? data set and a ?restricted coverage, many traits? subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations.Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used.Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs).The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy?environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52011 Pierce, Simon; Negreiros, Daniel; Cerabolini, Bruno E. L.; Kattge, Jens; Díaz, Sandra Myrna; et al.; A global method for calculating plant CSR ecological strategies applied across biomes world-wide; Wiley Blackwell Publishing, Inc; Functional Ecology; 31; 8-2016; 444-457 0269-8463 1365-2435 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52011 |
identifier_str_mv |
Pierce, Simon; Negreiros, Daniel; Cerabolini, Bruno E. L.; Kattge, Jens; Díaz, Sandra Myrna; et al.; A global method for calculating plant CSR ecological strategies applied across biomes world-wide; Wiley Blackwell Publishing, Inc; Functional Ecology; 31; 8-2016; 444-457 0269-8463 1365-2435 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2435 info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12722 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/vnd.openxmlformats-officedocument.wordprocessingml.document application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613549107707904 |
score |
13.070432 |