Spin interferometry in anisotropic spin-orbit fields

Autores
Saarikoski, Henri; Reynoso, Andres Alejandro; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
Fil: Saarikoski, Henri. Riken Center for Emergent Matter Science; Japón
Fil: Reynoso, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (CAB). Laboratorio de Propiedades Ópticas; Argentina
Fil: Baltanás, José Pablo. Universidad de Sevilla; España
Fil: Frustaglia, Diego. Universidad de Sevilla; España
Fil: Nitta, Junsaku. Tohoku University, Department Of Materials Science; Japón
Materia
INTERFEROMETRY
SPINTRONICS
RASHBA COUPLING
DRESSELHAUS COUPLING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98886

id CONICETDig_d2b6979ed3689ca654331baee4d81fb5
oai_identifier_str oai:ri.conicet.gov.ar:11336/98886
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spin interferometry in anisotropic spin-orbit fieldsSaarikoski, HenriReynoso, Andres AlejandroBaltanás, José PabloFrustaglia, DiegoNitta, JunsakuINTERFEROMETRYSPINTRONICSRASHBA COUPLINGDRESSELHAUS COUPLINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.Fil: Saarikoski, Henri. Riken Center for Emergent Matter Science; JapónFil: Reynoso, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (CAB). Laboratorio de Propiedades Ópticas; ArgentinaFil: Baltanás, José Pablo. Universidad de Sevilla; EspañaFil: Frustaglia, Diego. Universidad de Sevilla; EspañaFil: Nitta, Junsaku. Tohoku University, Department Of Materials Science; JapónAmerican Physical Society2018-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98886Saarikoski, Henri; Reynoso, Andres Alejandro; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku; Spin interferometry in anisotropic spin-orbit fields; American Physical Society; Physical Review B; 97; 12; 15-3-2018; 1-10; 1254232469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.97.125423info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.125423info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.07810info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:47Zoai:ri.conicet.gov.ar:11336/98886instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:47.338CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spin interferometry in anisotropic spin-orbit fields
title Spin interferometry in anisotropic spin-orbit fields
spellingShingle Spin interferometry in anisotropic spin-orbit fields
Saarikoski, Henri
INTERFEROMETRY
SPINTRONICS
RASHBA COUPLING
DRESSELHAUS COUPLING
title_short Spin interferometry in anisotropic spin-orbit fields
title_full Spin interferometry in anisotropic spin-orbit fields
title_fullStr Spin interferometry in anisotropic spin-orbit fields
title_full_unstemmed Spin interferometry in anisotropic spin-orbit fields
title_sort Spin interferometry in anisotropic spin-orbit fields
dc.creator.none.fl_str_mv Saarikoski, Henri
Reynoso, Andres Alejandro
Baltanás, José Pablo
Frustaglia, Diego
Nitta, Junsaku
author Saarikoski, Henri
author_facet Saarikoski, Henri
Reynoso, Andres Alejandro
Baltanás, José Pablo
Frustaglia, Diego
Nitta, Junsaku
author_role author
author2 Reynoso, Andres Alejandro
Baltanás, José Pablo
Frustaglia, Diego
Nitta, Junsaku
author2_role author
author
author
author
dc.subject.none.fl_str_mv INTERFEROMETRY
SPINTRONICS
RASHBA COUPLING
DRESSELHAUS COUPLING
topic INTERFEROMETRY
SPINTRONICS
RASHBA COUPLING
DRESSELHAUS COUPLING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
Fil: Saarikoski, Henri. Riken Center for Emergent Matter Science; Japón
Fil: Reynoso, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (CAB). Laboratorio de Propiedades Ópticas; Argentina
Fil: Baltanás, José Pablo. Universidad de Sevilla; España
Fil: Frustaglia, Diego. Universidad de Sevilla; España
Fil: Nitta, Junsaku. Tohoku University, Department Of Materials Science; Japón
description Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98886
Saarikoski, Henri; Reynoso, Andres Alejandro; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku; Spin interferometry in anisotropic spin-orbit fields; American Physical Society; Physical Review B; 97; 12; 15-3-2018; 1-10; 125423
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98886
identifier_str_mv Saarikoski, Henri; Reynoso, Andres Alejandro; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku; Spin interferometry in anisotropic spin-orbit fields; American Physical Society; Physical Review B; 97; 12; 15-3-2018; 1-10; 125423
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.97.125423
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.125423
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.07810
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614153215410176
score 13.069144