The distribution and origin of metals in simulated Milky Way-like galaxies

Autores
Iza, Federico; Scannapieco, Cecilia; Nuza, Sebastian Ernesto; Pakmor, R.; Grand, R. J. J.; Gómez, F. A.; Springel, V.; Marinacci, F.; Fragkoudi, F.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Chemical properties of stellar populations are a key observable that can be used to shed light on the assembly history of galaxies across cosmic time.In this study, we investigate the distribution and origin of chemical elements in different stellar components of simulated Milky Way-like galaxies in relation to their mass assembly history, stellar age, and metallicity.Using a sample of 23 simulated galaxies from the Auriga project, we analysed the evolution of heavy elements produced by stellar nucleosynthesis.To study the chemical evolution of the stellar halo, bulge, and warm (thick) and cold (thin) discs of the model galaxies, we applied a decomposition method to characterise the distribution of chemical elements at $z=0$ and traced back their origin.Our findings indicate that each stellar component has a distinctive chemical trend despite galaxy-to-galaxy variations.Specifically, stellar haloes are $\alpha$-enhanced relative to other components, representing the oldest populations, with $\mathrm{[Fe/H]} \sim -0.6$ and a high fraction of ex situ stars of $\sim50$\%. They are followed by the warm ($\mathrm{[Fe/H]} \sim -0.1$) and cold ($\mathrm{[Fe/H]} \sim 0$) discs, with in situ fractions of $\sim90$\% and $\sim95$\%, respectively.Alternatively, bulges are mainly formed in situ but host more diverse stellar populations, with [Fe/H] abundance extending over $\sim1~\mathrm{dex}$ around the solar value.We conclude that one of the main drivers shaping the chemical properties of the galactic components in our simulations is the age-metallicity relation.The bulges are the least homogeneous component of the sample, as they present different levels of contribution from young stars in addition to the old stellar component.Conversely, the cold discs appear very similar in all chemical properties, despite important differences in their typical formation times.Finally, we find that a significant fraction of stars in the warm discs were in the cold disc component at birth. We discuss the possible connections of this behaviour with the development of bars and interactions with satellites.
Fil: Iza, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Scannapieco, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Pakmor, R.. Gobierno de la República Federal de Alemania. Max Planck Institut für Astrophysik; Alemania
Fil: Grand, R. J. J.. Universidad de La Laguna; España
Fil: Gómez, F. A.. Universidad de La Serena; Chile
Fil: Springel, V.. Gobierno de la República Federal de Alemania. Max Planck Institut für Astrophysik; Alemania
Fil: Marinacci, F.. Universidad de Bologna; Italia
Fil: Fragkoudi, F.. University Of Durham. Dep.of Physics; Reino Unido
Materia
hydrodynamics
methods: numerical
galaxies: evolution
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/277499

id CONICETDig_d160aa6234cc3c0e5b04b9fca90200af
oai_identifier_str oai:ri.conicet.gov.ar:11336/277499
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The distribution and origin of metals in simulated Milky Way-like galaxiesIza, FedericoScannapieco, CeciliaNuza, Sebastian ErnestoPakmor, R.Grand, R. J. J.Gómez, F. A.Springel, V.Marinacci, F.Fragkoudi, F.hydrodynamicsmethods: numericalgalaxies: evolutionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Chemical properties of stellar populations are a key observable that can be used to shed light on the assembly history of galaxies across cosmic time.In this study, we investigate the distribution and origin of chemical elements in different stellar components of simulated Milky Way-like galaxies in relation to their mass assembly history, stellar age, and metallicity.Using a sample of 23 simulated galaxies from the Auriga project, we analysed the evolution of heavy elements produced by stellar nucleosynthesis.To study the chemical evolution of the stellar halo, bulge, and warm (thick) and cold (thin) discs of the model galaxies, we applied a decomposition method to characterise the distribution of chemical elements at $z=0$ and traced back their origin.Our findings indicate that each stellar component has a distinctive chemical trend despite galaxy-to-galaxy variations.Specifically, stellar haloes are $\alpha$-enhanced relative to other components, representing the oldest populations, with $\mathrm{[Fe/H]} \sim -0.6$ and a high fraction of ex situ stars of $\sim50$\%. They are followed by the warm ($\mathrm{[Fe/H]} \sim -0.1$) and cold ($\mathrm{[Fe/H]} \sim 0$) discs, with in situ fractions of $\sim90$\% and $\sim95$\%, respectively.Alternatively, bulges are mainly formed in situ but host more diverse stellar populations, with [Fe/H] abundance extending over $\sim1~\mathrm{dex}$ around the solar value.We conclude that one of the main drivers shaping the chemical properties of the galactic components in our simulations is the age-metallicity relation.The bulges are the least homogeneous component of the sample, as they present different levels of contribution from young stars in addition to the old stellar component.Conversely, the cold discs appear very similar in all chemical properties, despite important differences in their typical formation times.Finally, we find that a significant fraction of stars in the warm discs were in the cold disc component at birth. We discuss the possible connections of this behaviour with the development of bars and interactions with satellites.Fil: Iza, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Scannapieco, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Pakmor, R.. Gobierno de la República Federal de Alemania. Max Planck Institut für Astrophysik; AlemaniaFil: Grand, R. J. J.. Universidad de La Laguna; EspañaFil: Gómez, F. A.. Universidad de La Serena; ChileFil: Springel, V.. Gobierno de la República Federal de Alemania. Max Planck Institut für Astrophysik; AlemaniaFil: Marinacci, F.. Universidad de Bologna; ItaliaFil: Fragkoudi, F.. University Of Durham. Dep.of Physics; Reino UnidoEDP Sciences2025-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277499Iza, Federico; Scannapieco, Cecilia; Nuza, Sebastian Ernesto; Pakmor, R.; Grand, R. J. J.; et al.; The distribution and origin of metals in simulated Milky Way-like galaxies; EDP Sciences; Astronomy and Astrophysics; 701; 9-2025; 1-190004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202554810info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202554810info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:21:15Zoai:ri.conicet.gov.ar:11336/277499instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:21:15.484CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The distribution and origin of metals in simulated Milky Way-like galaxies
title The distribution and origin of metals in simulated Milky Way-like galaxies
spellingShingle The distribution and origin of metals in simulated Milky Way-like galaxies
Iza, Federico
hydrodynamics
methods: numerical
galaxies: evolution
title_short The distribution and origin of metals in simulated Milky Way-like galaxies
title_full The distribution and origin of metals in simulated Milky Way-like galaxies
title_fullStr The distribution and origin of metals in simulated Milky Way-like galaxies
title_full_unstemmed The distribution and origin of metals in simulated Milky Way-like galaxies
title_sort The distribution and origin of metals in simulated Milky Way-like galaxies
dc.creator.none.fl_str_mv Iza, Federico
Scannapieco, Cecilia
Nuza, Sebastian Ernesto
Pakmor, R.
Grand, R. J. J.
Gómez, F. A.
Springel, V.
Marinacci, F.
Fragkoudi, F.
author Iza, Federico
author_facet Iza, Federico
Scannapieco, Cecilia
Nuza, Sebastian Ernesto
Pakmor, R.
Grand, R. J. J.
Gómez, F. A.
Springel, V.
Marinacci, F.
Fragkoudi, F.
author_role author
author2 Scannapieco, Cecilia
Nuza, Sebastian Ernesto
Pakmor, R.
Grand, R. J. J.
Gómez, F. A.
Springel, V.
Marinacci, F.
Fragkoudi, F.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv hydrodynamics
methods: numerical
galaxies: evolution
topic hydrodynamics
methods: numerical
galaxies: evolution
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Chemical properties of stellar populations are a key observable that can be used to shed light on the assembly history of galaxies across cosmic time.In this study, we investigate the distribution and origin of chemical elements in different stellar components of simulated Milky Way-like galaxies in relation to their mass assembly history, stellar age, and metallicity.Using a sample of 23 simulated galaxies from the Auriga project, we analysed the evolution of heavy elements produced by stellar nucleosynthesis.To study the chemical evolution of the stellar halo, bulge, and warm (thick) and cold (thin) discs of the model galaxies, we applied a decomposition method to characterise the distribution of chemical elements at $z=0$ and traced back their origin.Our findings indicate that each stellar component has a distinctive chemical trend despite galaxy-to-galaxy variations.Specifically, stellar haloes are $\alpha$-enhanced relative to other components, representing the oldest populations, with $\mathrm{[Fe/H]} \sim -0.6$ and a high fraction of ex situ stars of $\sim50$\%. They are followed by the warm ($\mathrm{[Fe/H]} \sim -0.1$) and cold ($\mathrm{[Fe/H]} \sim 0$) discs, with in situ fractions of $\sim90$\% and $\sim95$\%, respectively.Alternatively, bulges are mainly formed in situ but host more diverse stellar populations, with [Fe/H] abundance extending over $\sim1~\mathrm{dex}$ around the solar value.We conclude that one of the main drivers shaping the chemical properties of the galactic components in our simulations is the age-metallicity relation.The bulges are the least homogeneous component of the sample, as they present different levels of contribution from young stars in addition to the old stellar component.Conversely, the cold discs appear very similar in all chemical properties, despite important differences in their typical formation times.Finally, we find that a significant fraction of stars in the warm discs were in the cold disc component at birth. We discuss the possible connections of this behaviour with the development of bars and interactions with satellites.
Fil: Iza, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Scannapieco, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Pakmor, R.. Gobierno de la República Federal de Alemania. Max Planck Institut für Astrophysik; Alemania
Fil: Grand, R. J. J.. Universidad de La Laguna; España
Fil: Gómez, F. A.. Universidad de La Serena; Chile
Fil: Springel, V.. Gobierno de la República Federal de Alemania. Max Planck Institut für Astrophysik; Alemania
Fil: Marinacci, F.. Universidad de Bologna; Italia
Fil: Fragkoudi, F.. University Of Durham. Dep.of Physics; Reino Unido
description Chemical properties of stellar populations are a key observable that can be used to shed light on the assembly history of galaxies across cosmic time.In this study, we investigate the distribution and origin of chemical elements in different stellar components of simulated Milky Way-like galaxies in relation to their mass assembly history, stellar age, and metallicity.Using a sample of 23 simulated galaxies from the Auriga project, we analysed the evolution of heavy elements produced by stellar nucleosynthesis.To study the chemical evolution of the stellar halo, bulge, and warm (thick) and cold (thin) discs of the model galaxies, we applied a decomposition method to characterise the distribution of chemical elements at $z=0$ and traced back their origin.Our findings indicate that each stellar component has a distinctive chemical trend despite galaxy-to-galaxy variations.Specifically, stellar haloes are $\alpha$-enhanced relative to other components, representing the oldest populations, with $\mathrm{[Fe/H]} \sim -0.6$ and a high fraction of ex situ stars of $\sim50$\%. They are followed by the warm ($\mathrm{[Fe/H]} \sim -0.1$) and cold ($\mathrm{[Fe/H]} \sim 0$) discs, with in situ fractions of $\sim90$\% and $\sim95$\%, respectively.Alternatively, bulges are mainly formed in situ but host more diverse stellar populations, with [Fe/H] abundance extending over $\sim1~\mathrm{dex}$ around the solar value.We conclude that one of the main drivers shaping the chemical properties of the galactic components in our simulations is the age-metallicity relation.The bulges are the least homogeneous component of the sample, as they present different levels of contribution from young stars in addition to the old stellar component.Conversely, the cold discs appear very similar in all chemical properties, despite important differences in their typical formation times.Finally, we find that a significant fraction of stars in the warm discs were in the cold disc component at birth. We discuss the possible connections of this behaviour with the development of bars and interactions with satellites.
publishDate 2025
dc.date.none.fl_str_mv 2025-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/277499
Iza, Federico; Scannapieco, Cecilia; Nuza, Sebastian Ernesto; Pakmor, R.; Grand, R. J. J.; et al.; The distribution and origin of metals in simulated Milky Way-like galaxies; EDP Sciences; Astronomy and Astrophysics; 701; 9-2025; 1-19
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/277499
identifier_str_mv Iza, Federico; Scannapieco, Cecilia; Nuza, Sebastian Ernesto; Pakmor, R.; Grand, R. J. J.; et al.; The distribution and origin of metals in simulated Milky Way-like galaxies; EDP Sciences; Astronomy and Astrophysics; 701; 9-2025; 1-19
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202554810
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202554810
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335097192120320
score 12.952241