Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method

Autores
Sergio Ferrari; Saccone, Fabio Daniel; Aphesteguy, Juan Carlos
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The structural and magnetic properties of Fe(3-x)ZnxO4(x: 0, 0.1, 0.2, 0.5, 1) nanoparticles, prepared by wet chemical method, have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, and magnetization measurements. The nanoparticles are polyhedrical-shaped with a narrow distribution in size as it was verified by SEM. By Rietveld analysis of XRD patterns, it was determined that the crystallites' sizes of Fe(3-x)ZnxO4 in spinel structure is in the range of 30 to 50 nm. Hysteresis cycles, measured at different temperatures (300, 200, 100, 50, and 7 K), showed an increase in saturation, while temperature is diminished, as it is expected. All the samples, exhibited a high blocking temperature of ~350 K, as it was determined by zero field cooling-field cooling measurements. This fact, reveals their strongly interacting superparamagnetic nature. Real ac susceptibility increases with temperature, while the imaginary part has a maximum, which depends on frequency, and it is related to a critical temperature, which depends on composition. A Néel-Arrhenius dependence of frequency on the critical temperature was found for all the samples. We determined a minimum of the effective anisotropy for x=0.2.
Fil: Sergio Ferrari. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; Argentina
Fil: Saccone, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; Argentina
Fil: Aphesteguy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; Argentina
Materia
Zinc
Temperature Measurement
Magnetic Hysteresis
Nanoparticles
Magnetic Properties
Magnetic Resonance Imaging
Ferrites
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14847

id CONICETDig_d0c0c6a6524699d4bbdb4b0e81d2b772
oai_identifier_str oai:ri.conicet.gov.ar:11336/14847
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical methodSergio FerrariSaccone, Fabio DanielAphesteguy, Juan CarlosZincTemperature MeasurementMagnetic HysteresisNanoparticlesMagnetic PropertiesMagnetic Resonance ImagingFerriteshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The structural and magnetic properties of Fe(3-x)ZnxO4(x: 0, 0.1, 0.2, 0.5, 1) nanoparticles, prepared by wet chemical method, have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, and magnetization measurements. The nanoparticles are polyhedrical-shaped with a narrow distribution in size as it was verified by SEM. By Rietveld analysis of XRD patterns, it was determined that the crystallites' sizes of Fe(3-x)ZnxO4 in spinel structure is in the range of 30 to 50 nm. Hysteresis cycles, measured at different temperatures (300, 200, 100, 50, and 7 K), showed an increase in saturation, while temperature is diminished, as it is expected. All the samples, exhibited a high blocking temperature of ~350 K, as it was determined by zero field cooling-field cooling measurements. This fact, reveals their strongly interacting superparamagnetic nature. Real ac susceptibility increases with temperature, while the imaginary part has a maximum, which depends on frequency, and it is related to a critical temperature, which depends on composition. A Néel-Arrhenius dependence of frequency on the critical temperature was found for all the samples. We determined a minimum of the effective anisotropy for x=0.2.Fil: Sergio Ferrari. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; ArgentinaFil: Saccone, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; ArgentinaFil: Aphesteguy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; ArgentinaInstitute of Electrical and Electronics Engineers2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14847Sergio Ferrari; Saccone, Fabio Daniel; Aphesteguy, Juan Carlos; Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method; Institute of Electrical and Electronics Engineers; IEEE Transactions on Magnetics; 51; 6; 6-2015; 1-60018-94641941-0069enginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6975229info:eu-repo/semantics/altIdentifier/doi/10.1109/TMAG.2014.2377132info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:03:03Zoai:ri.conicet.gov.ar:11336/14847instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:03:03.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
title Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
spellingShingle Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
Sergio Ferrari
Zinc
Temperature Measurement
Magnetic Hysteresis
Nanoparticles
Magnetic Properties
Magnetic Resonance Imaging
Ferrites
title_short Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
title_full Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
title_fullStr Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
title_full_unstemmed Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
title_sort Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method
dc.creator.none.fl_str_mv Sergio Ferrari
Saccone, Fabio Daniel
Aphesteguy, Juan Carlos
author Sergio Ferrari
author_facet Sergio Ferrari
Saccone, Fabio Daniel
Aphesteguy, Juan Carlos
author_role author
author2 Saccone, Fabio Daniel
Aphesteguy, Juan Carlos
author2_role author
author
dc.subject.none.fl_str_mv Zinc
Temperature Measurement
Magnetic Hysteresis
Nanoparticles
Magnetic Properties
Magnetic Resonance Imaging
Ferrites
topic Zinc
Temperature Measurement
Magnetic Hysteresis
Nanoparticles
Magnetic Properties
Magnetic Resonance Imaging
Ferrites
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The structural and magnetic properties of Fe(3-x)ZnxO4(x: 0, 0.1, 0.2, 0.5, 1) nanoparticles, prepared by wet chemical method, have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, and magnetization measurements. The nanoparticles are polyhedrical-shaped with a narrow distribution in size as it was verified by SEM. By Rietveld analysis of XRD patterns, it was determined that the crystallites' sizes of Fe(3-x)ZnxO4 in spinel structure is in the range of 30 to 50 nm. Hysteresis cycles, measured at different temperatures (300, 200, 100, 50, and 7 K), showed an increase in saturation, while temperature is diminished, as it is expected. All the samples, exhibited a high blocking temperature of ~350 K, as it was determined by zero field cooling-field cooling measurements. This fact, reveals their strongly interacting superparamagnetic nature. Real ac susceptibility increases with temperature, while the imaginary part has a maximum, which depends on frequency, and it is related to a critical temperature, which depends on composition. A Néel-Arrhenius dependence of frequency on the critical temperature was found for all the samples. We determined a minimum of the effective anisotropy for x=0.2.
Fil: Sergio Ferrari. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; Argentina
Fil: Saccone, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; Argentina
Fil: Aphesteguy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; Argentina
description The structural and magnetic properties of Fe(3-x)ZnxO4(x: 0, 0.1, 0.2, 0.5, 1) nanoparticles, prepared by wet chemical method, have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, and magnetization measurements. The nanoparticles are polyhedrical-shaped with a narrow distribution in size as it was verified by SEM. By Rietveld analysis of XRD patterns, it was determined that the crystallites' sizes of Fe(3-x)ZnxO4 in spinel structure is in the range of 30 to 50 nm. Hysteresis cycles, measured at different temperatures (300, 200, 100, 50, and 7 K), showed an increase in saturation, while temperature is diminished, as it is expected. All the samples, exhibited a high blocking temperature of ~350 K, as it was determined by zero field cooling-field cooling measurements. This fact, reveals their strongly interacting superparamagnetic nature. Real ac susceptibility increases with temperature, while the imaginary part has a maximum, which depends on frequency, and it is related to a critical temperature, which depends on composition. A Néel-Arrhenius dependence of frequency on the critical temperature was found for all the samples. We determined a minimum of the effective anisotropy for x=0.2.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14847
Sergio Ferrari; Saccone, Fabio Daniel; Aphesteguy, Juan Carlos; Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method; Institute of Electrical and Electronics Engineers; IEEE Transactions on Magnetics; 51; 6; 6-2015; 1-6
0018-9464
1941-0069
url http://hdl.handle.net/11336/14847
identifier_str_mv Sergio Ferrari; Saccone, Fabio Daniel; Aphesteguy, Juan Carlos; Structural and magnetic properties of Zn doped magnetite nanoparticles obtained by wet chemical method; Institute of Electrical and Electronics Engineers; IEEE Transactions on Magnetics; 51; 6; 6-2015; 1-6
0018-9464
1941-0069
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6975229
info:eu-repo/semantics/altIdentifier/doi/10.1109/TMAG.2014.2377132
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083172735909888
score 13.22299