Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection
- Autores
- Knott, María Elena; Manzi, Malena; Zabalegui, Nicolás; Salazar, Mario Oscar; Puricelli, Lydia Ines; Monge, Maria Eugenia
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A protocol for harvesting and extracting extracellular metabolites from an in vitro model of human renal cell lines was developed to profile the exometabolome by means of a discovery-based metabolomics approach using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned media (CM) samples (n = 66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with different genetic backgrounds and a nontumor renal cell line, were compared with the human serum metabolic profile of a pilot cohort (n = 10) comprised of stage IV ccRCC patients and healthy individuals. Using a cross-validated orthogonal projection to latent structures-discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate classification, allowed differentiating control from tumor cell lines with 100% specificity, sensitivity, and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset of 9 discriminant features, including the identified metabolites except for CYSSG, produced a fingerprint of classification value that enabled discerning ccRCC patients from healthy individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated with ccRCC. Results from this study provide a proof of concept that CM can be used as a serum proxy to obtain disease-related metabolic signatures.
Fil: Knott, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Manzi, Malena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Zabalegui, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Salazar, Mario Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina
Fil: Puricelli, Lydia Ines. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina - Materia
-
CLEAR CELL RENAL CELL CARCINOMA
CONDITIONED MEDIA
IN VITRO CELL CULTURE
METABOLIC FOOTPRINTING
METABOLOMICS
ULTRAPERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88587
Ver los metadatos del registro completo
id |
CONICETDig_d0bd844e9abb7b1905e3620799acc7a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88587 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer DetectionKnott, María ElenaManzi, MalenaZabalegui, NicolásSalazar, Mario OscarPuricelli, Lydia InesMonge, Maria EugeniaCLEAR CELL RENAL CELL CARCINOMACONDITIONED MEDIAIN VITRO CELL CULTUREMETABOLIC FOOTPRINTINGMETABOLOMICSULTRAPERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A protocol for harvesting and extracting extracellular metabolites from an in vitro model of human renal cell lines was developed to profile the exometabolome by means of a discovery-based metabolomics approach using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned media (CM) samples (n = 66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with different genetic backgrounds and a nontumor renal cell line, were compared with the human serum metabolic profile of a pilot cohort (n = 10) comprised of stage IV ccRCC patients and healthy individuals. Using a cross-validated orthogonal projection to latent structures-discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate classification, allowed differentiating control from tumor cell lines with 100% specificity, sensitivity, and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset of 9 discriminant features, including the identified metabolites except for CYSSG, produced a fingerprint of classification value that enabled discerning ccRCC patients from healthy individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated with ccRCC. Results from this study provide a proof of concept that CM can be used as a serum proxy to obtain disease-related metabolic signatures.Fil: Knott, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Manzi, Malena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Zabalegui, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Salazar, Mario Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; ArgentinaFil: Puricelli, Lydia Ines. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaAmerican Chemical Society2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88587Knott, María Elena; Manzi, Malena; Zabalegui, Nicolás; Salazar, Mario Oscar; Puricelli, Lydia Ines; et al.; Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection; American Chemical Society; Journal of Proteome Research; 17; 11; 11-2018; 3877-38881535-3893CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jproteome.8b00538info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jproteome.8b00538info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:14Zoai:ri.conicet.gov.ar:11336/88587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:14.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection |
title |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection |
spellingShingle |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection Knott, María Elena CLEAR CELL RENAL CELL CARCINOMA CONDITIONED MEDIA IN VITRO CELL CULTURE METABOLIC FOOTPRINTING METABOLOMICS ULTRAPERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY |
title_short |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection |
title_full |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection |
title_fullStr |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection |
title_full_unstemmed |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection |
title_sort |
Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection |
dc.creator.none.fl_str_mv |
Knott, María Elena Manzi, Malena Zabalegui, Nicolás Salazar, Mario Oscar Puricelli, Lydia Ines Monge, Maria Eugenia |
author |
Knott, María Elena |
author_facet |
Knott, María Elena Manzi, Malena Zabalegui, Nicolás Salazar, Mario Oscar Puricelli, Lydia Ines Monge, Maria Eugenia |
author_role |
author |
author2 |
Manzi, Malena Zabalegui, Nicolás Salazar, Mario Oscar Puricelli, Lydia Ines Monge, Maria Eugenia |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CLEAR CELL RENAL CELL CARCINOMA CONDITIONED MEDIA IN VITRO CELL CULTURE METABOLIC FOOTPRINTING METABOLOMICS ULTRAPERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY |
topic |
CLEAR CELL RENAL CELL CARCINOMA CONDITIONED MEDIA IN VITRO CELL CULTURE METABOLIC FOOTPRINTING METABOLOMICS ULTRAPERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A protocol for harvesting and extracting extracellular metabolites from an in vitro model of human renal cell lines was developed to profile the exometabolome by means of a discovery-based metabolomics approach using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned media (CM) samples (n = 66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with different genetic backgrounds and a nontumor renal cell line, were compared with the human serum metabolic profile of a pilot cohort (n = 10) comprised of stage IV ccRCC patients and healthy individuals. Using a cross-validated orthogonal projection to latent structures-discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate classification, allowed differentiating control from tumor cell lines with 100% specificity, sensitivity, and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset of 9 discriminant features, including the identified metabolites except for CYSSG, produced a fingerprint of classification value that enabled discerning ccRCC patients from healthy individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated with ccRCC. Results from this study provide a proof of concept that CM can be used as a serum proxy to obtain disease-related metabolic signatures. Fil: Knott, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina Fil: Manzi, Malena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina Fil: Zabalegui, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina Fil: Salazar, Mario Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina Fil: Puricelli, Lydia Ines. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina |
description |
A protocol for harvesting and extracting extracellular metabolites from an in vitro model of human renal cell lines was developed to profile the exometabolome by means of a discovery-based metabolomics approach using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned media (CM) samples (n = 66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with different genetic backgrounds and a nontumor renal cell line, were compared with the human serum metabolic profile of a pilot cohort (n = 10) comprised of stage IV ccRCC patients and healthy individuals. Using a cross-validated orthogonal projection to latent structures-discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate classification, allowed differentiating control from tumor cell lines with 100% specificity, sensitivity, and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset of 9 discriminant features, including the identified metabolites except for CYSSG, produced a fingerprint of classification value that enabled discerning ccRCC patients from healthy individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated with ccRCC. Results from this study provide a proof of concept that CM can be used as a serum proxy to obtain disease-related metabolic signatures. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88587 Knott, María Elena; Manzi, Malena; Zabalegui, Nicolás; Salazar, Mario Oscar; Puricelli, Lydia Ines; et al.; Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection; American Chemical Society; Journal of Proteome Research; 17; 11; 11-2018; 3877-3888 1535-3893 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88587 |
identifier_str_mv |
Knott, María Elena; Manzi, Malena; Zabalegui, Nicolás; Salazar, Mario Oscar; Puricelli, Lydia Ines; et al.; Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection; American Chemical Society; Journal of Proteome Research; 17; 11; 11-2018; 3877-3888 1535-3893 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jproteome.8b00538 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jproteome.8b00538 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082619794522112 |
score |
13.22299 |