Self-gravitating black hole scalar wigs

Autores
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; Megevand Politano, Miguel Federico; Núñez, Darío; Sarbach, Olivier
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.
Fil: Barranco, Juan. Universidad de Guanajuato; México
Fil: Bernal, Argelia. Universidad de Guanajuato; México. Universidad Autónoma del Estado de Hidalgo; México
Fil: Degollado, Juan Carlos. Universidad Nacional Autónoma de México; México
Fil: Diez Tejedor, Alberto. Universidad de Guanajuato; México
Fil: Megevand Politano, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Núñez, Darío. Universidad Nacional Autónoma de México; México
Fil: Sarbach, Olivier. Universidad Michoacana de San Nicolás de Hidalgo; México
Materia
Black Hole
Scalar Field
Dark Matter
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/64713

id CONICETDig_d066a98a1735644b1c6597839eeec570
oai_identifier_str oai:ri.conicet.gov.ar:11336/64713
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Self-gravitating black hole scalar wigsBarranco, JuanBernal, ArgeliaDegollado, Juan CarlosDiez Tejedor, AlbertoMegevand Politano, Miguel FedericoNúñez, DaríoSarbach, OlivierBlack HoleScalar FieldDark Matterhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.Fil: Barranco, Juan. Universidad de Guanajuato; MéxicoFil: Bernal, Argelia. Universidad de Guanajuato; México. Universidad Autónoma del Estado de Hidalgo; MéxicoFil: Degollado, Juan Carlos. Universidad Nacional Autónoma de México; MéxicoFil: Diez Tejedor, Alberto. Universidad de Guanajuato; MéxicoFil: Megevand Politano, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Núñez, Darío. Universidad Nacional Autónoma de México; MéxicoFil: Sarbach, Olivier. Universidad Michoacana de San Nicolás de Hidalgo; MéxicoAmerican Physical Society2017-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64713Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; Megevand Politano, Miguel Federico; et al.; Self-gravitating black hole scalar wigs; American Physical Society; Physical Review D; 96; 2; 26-7-20172470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.024049info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.96.024049info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1704.03450info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:25:19Zoai:ri.conicet.gov.ar:11336/64713instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:25:20.028CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Self-gravitating black hole scalar wigs
title Self-gravitating black hole scalar wigs
spellingShingle Self-gravitating black hole scalar wigs
Barranco, Juan
Black Hole
Scalar Field
Dark Matter
title_short Self-gravitating black hole scalar wigs
title_full Self-gravitating black hole scalar wigs
title_fullStr Self-gravitating black hole scalar wigs
title_full_unstemmed Self-gravitating black hole scalar wigs
title_sort Self-gravitating black hole scalar wigs
dc.creator.none.fl_str_mv Barranco, Juan
Bernal, Argelia
Degollado, Juan Carlos
Diez Tejedor, Alberto
Megevand Politano, Miguel Federico
Núñez, Darío
Sarbach, Olivier
author Barranco, Juan
author_facet Barranco, Juan
Bernal, Argelia
Degollado, Juan Carlos
Diez Tejedor, Alberto
Megevand Politano, Miguel Federico
Núñez, Darío
Sarbach, Olivier
author_role author
author2 Bernal, Argelia
Degollado, Juan Carlos
Diez Tejedor, Alberto
Megevand Politano, Miguel Federico
Núñez, Darío
Sarbach, Olivier
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Black Hole
Scalar Field
Dark Matter
topic Black Hole
Scalar Field
Dark Matter
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.
Fil: Barranco, Juan. Universidad de Guanajuato; México
Fil: Bernal, Argelia. Universidad de Guanajuato; México. Universidad Autónoma del Estado de Hidalgo; México
Fil: Degollado, Juan Carlos. Universidad Nacional Autónoma de México; México
Fil: Diez Tejedor, Alberto. Universidad de Guanajuato; México
Fil: Megevand Politano, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Núñez, Darío. Universidad Nacional Autónoma de México; México
Fil: Sarbach, Olivier. Universidad Michoacana de San Nicolás de Hidalgo; México
description It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/64713
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; Megevand Politano, Miguel Federico; et al.; Self-gravitating black hole scalar wigs; American Physical Society; Physical Review D; 96; 2; 26-7-2017
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/64713
identifier_str_mv Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; Megevand Politano, Miguel Federico; et al.; Self-gravitating black hole scalar wigs; American Physical Society; Physical Review D; 96; 2; 26-7-2017
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.024049
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.96.024049
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1704.03450
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083398161924096
score 13.22299