CO2 hydrogenation into methanol: Measurement and correlation of PVT data

Autores
Cotabarren, Natalia Soledad; Hegel, Pablo Ezequiel; Pereda, Selva
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition.
Fil: Cotabarren, Natalia Soledad. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Hegel, Pablo Ezequiel. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pereda, Selva. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
11th World Congress of Chemical Engineering
Argentina
Asociación Argentina de Ingenieros Químicos
Materia
HYDROGENATION
PVT DATA
SUPERCRITICAL CO2
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264055

id CONICETDig_d000a49edc599970fa9310f74192e309
oai_identifier_str oai:ri.conicet.gov.ar:11336/264055
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling CO2 hydrogenation into methanol: Measurement and correlation of PVT dataCotabarren, Natalia SoledadHegel, Pablo EzequielPereda, SelvaHYDROGENATIONPVT DATASUPERCRITICAL CO2https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition.Fil: Cotabarren, Natalia Soledad. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Hegel, Pablo Ezequiel. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pereda, Selva. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina11th World Congress of Chemical EngineeringArgentinaAsociación Argentina de Ingenieros QuímicosAsociación Argentina de Ingenieros Químicos2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264055CO2 hydrogenation into methanol: Measurement and correlation of PVT data; 11th World Congress of Chemical Engineering; Argentina; 2023; 1-12953-5565CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.wcce11.org/wc/template/Proceedings-Abstracts_WCCE11.pdf?Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:45Zoai:ri.conicet.gov.ar:11336/264055instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:45.591CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv CO2 hydrogenation into methanol: Measurement and correlation of PVT data
title CO2 hydrogenation into methanol: Measurement and correlation of PVT data
spellingShingle CO2 hydrogenation into methanol: Measurement and correlation of PVT data
Cotabarren, Natalia Soledad
HYDROGENATION
PVT DATA
SUPERCRITICAL CO2
title_short CO2 hydrogenation into methanol: Measurement and correlation of PVT data
title_full CO2 hydrogenation into methanol: Measurement and correlation of PVT data
title_fullStr CO2 hydrogenation into methanol: Measurement and correlation of PVT data
title_full_unstemmed CO2 hydrogenation into methanol: Measurement and correlation of PVT data
title_sort CO2 hydrogenation into methanol: Measurement and correlation of PVT data
dc.creator.none.fl_str_mv Cotabarren, Natalia Soledad
Hegel, Pablo Ezequiel
Pereda, Selva
author Cotabarren, Natalia Soledad
author_facet Cotabarren, Natalia Soledad
Hegel, Pablo Ezequiel
Pereda, Selva
author_role author
author2 Hegel, Pablo Ezequiel
Pereda, Selva
author2_role author
author
dc.subject.none.fl_str_mv HYDROGENATION
PVT DATA
SUPERCRITICAL CO2
topic HYDROGENATION
PVT DATA
SUPERCRITICAL CO2
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition.
Fil: Cotabarren, Natalia Soledad. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Hegel, Pablo Ezequiel. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pereda, Selva. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
11th World Congress of Chemical Engineering
Argentina
Asociación Argentina de Ingenieros Químicos
description CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264055
CO2 hydrogenation into methanol: Measurement and correlation of PVT data; 11th World Congress of Chemical Engineering; Argentina; 2023; 1-1
2953-5565
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264055
identifier_str_mv CO2 hydrogenation into methanol: Measurement and correlation of PVT data; 11th World Congress of Chemical Engineering; Argentina; 2023; 1-1
2953-5565
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.wcce11.org/wc/template/Proceedings-Abstracts_WCCE11.pdf?
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Asociación Argentina de Ingenieros Químicos
publisher.none.fl_str_mv Asociación Argentina de Ingenieros Químicos
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614436925472768
score 13.070432