CO2 hydrogenation into methanol: Measurement and correlation of PVT data
- Autores
- Cotabarren, Natalia Soledad; Hegel, Pablo Ezequiel; Pereda, Selva
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition.
Fil: Cotabarren, Natalia Soledad. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Hegel, Pablo Ezequiel. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pereda, Selva. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
11th World Congress of Chemical Engineering
Argentina
Asociación Argentina de Ingenieros Químicos - Materia
-
HYDROGENATION
PVT DATA
SUPERCRITICAL CO2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264055
Ver los metadatos del registro completo
id |
CONICETDig_d000a49edc599970fa9310f74192e309 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264055 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
CO2 hydrogenation into methanol: Measurement and correlation of PVT dataCotabarren, Natalia SoledadHegel, Pablo EzequielPereda, SelvaHYDROGENATIONPVT DATASUPERCRITICAL CO2https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition.Fil: Cotabarren, Natalia Soledad. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Hegel, Pablo Ezequiel. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pereda, Selva. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina11th World Congress of Chemical EngineeringArgentinaAsociación Argentina de Ingenieros QuímicosAsociación Argentina de Ingenieros Químicos2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264055CO2 hydrogenation into methanol: Measurement and correlation of PVT data; 11th World Congress of Chemical Engineering; Argentina; 2023; 1-12953-5565CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.wcce11.org/wc/template/Proceedings-Abstracts_WCCE11.pdf?Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:45Zoai:ri.conicet.gov.ar:11336/264055instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:45.591CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data |
title |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data |
spellingShingle |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data Cotabarren, Natalia Soledad HYDROGENATION PVT DATA SUPERCRITICAL CO2 |
title_short |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data |
title_full |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data |
title_fullStr |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data |
title_full_unstemmed |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data |
title_sort |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data |
dc.creator.none.fl_str_mv |
Cotabarren, Natalia Soledad Hegel, Pablo Ezequiel Pereda, Selva |
author |
Cotabarren, Natalia Soledad |
author_facet |
Cotabarren, Natalia Soledad Hegel, Pablo Ezequiel Pereda, Selva |
author_role |
author |
author2 |
Hegel, Pablo Ezequiel Pereda, Selva |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HYDROGENATION PVT DATA SUPERCRITICAL CO2 |
topic |
HYDROGENATION PVT DATA SUPERCRITICAL CO2 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition. Fil: Cotabarren, Natalia Soledad. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Hegel, Pablo Ezequiel. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Pereda, Selva. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina 11th World Congress of Chemical Engineering Argentina Asociación Argentina de Ingenieros Químicos |
description |
CO2 hydrogenation for the synthesis of methanol (CH3OH) is an interesting route to mitigate CO2 emissions and promote a sustainable economy considering CO2 capture/utilization and H2 storage. Based on the current industrial methanol production from syngas (H2+CO and minor quantities of CO2 and CH4), CO2 hydrogenation can be carried out in gas-solid catalytic reactors at moderated pressures (5 to 10 MPa) and temperatures between 490 K and 570 K [1]. However, the current industrial method requires a large recycle flow of syngas due to the limited conversion achieved in the reactor. An interesting concept is to apply in situ condensation of methanol or water (subproduct) operating at higher pressures (12, to 20 MPa) without using adsorbents or additional coolers to increase the conversion [2]. Volumetric properties of reaction systems are needed to elucidate kinetic mechanisms and carry out a proper design of these high-pressure continuous reactors, particularly in the reaction system with an in-situ condensation of products. However, scarce experimental PvT data of the system (CO2+H2+CH3OH+H2O) has been reported in the literature in the range of temperature (493.15 K to 563 K) and pressures (70 to 400 bar) of interest to carry out the CO2 hydrogenation [ref]. Modeling accurately the volumetric properties and phase behavior of this supercritical reaction system can be complex due to the asymmetric molecular nature between reactants (CO2/H2) and products (mainly CH3OH and H2O). In this work, we adapted a high pressure/temperature stainless-steel constant volume cell (12.76 cc) to study experimentally the pressure-temperature isochoric behavior of synthetic mixtures formed by CO2+H2+Methanol+water under different stoichiometric molar ratios. We report new experimental PvT data of non-reactive mixtures of H2+CO2+CH3OH+H2O in the range of temperature and pressure of industrial interest. Also, the phase equilibria and PvT data are modeled using RK-PR, a three-parameter equation of state. We selected the RK-PR because of its simplicity and proven accuracy to represent volumetric properties [3].The apparatus used for performing the PvT measurements operates according to a synthetic method being possible to feed properly known compositions of the system under study. CH3OH/H2O mixtures are injected as liquid in first place, and a high-pressure gas-dosing injection device built in our workshop is used to load CO2/H2 mixtures of known composition. The equipment has been calibrated in the range of operating conditions using pure fluids (methanol, CO2, water). These measurements were compared to PvT data from the National Institute of Standard and Technology (NIST). The uncertainty in the density values is about 1.2 % based on calibration studies. Isochoric studies of the multicomponent system between 0.08 g/cc and 0.5 g/cc show evidence of the phase transition, from heterogeneous to homogeneous, phase condition. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264055 CO2 hydrogenation into methanol: Measurement and correlation of PVT data; 11th World Congress of Chemical Engineering; Argentina; 2023; 1-1 2953-5565 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264055 |
identifier_str_mv |
CO2 hydrogenation into methanol: Measurement and correlation of PVT data; 11th World Congress of Chemical Engineering; Argentina; 2023; 1-1 2953-5565 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.wcce11.org/wc/template/Proceedings-Abstracts_WCCE11.pdf? |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Ingenieros Químicos |
publisher.none.fl_str_mv |
Asociación Argentina de Ingenieros Químicos |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614436925472768 |
score |
13.070432 |