Followee recommendation based on text analysis of micro-blogging activity
- Autores
- Armentano, Marcelo Gabriel; Godoy, Daniela Lis; Amandi, Analia Adriana
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium, have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users´ interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people.
Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
MICRO-BLOGGING
RECOMMENDER SYSTEMS
TEXT MINING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/1169
Ver los metadatos del registro completo
id |
CONICETDig_cf40df727b4c544fb76b2cb852bc2c65 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/1169 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Followee recommendation based on text analysis of micro-blogging activityArmentano, Marcelo GabrielGodoy, Daniela LisAmandi, Analia AdrianaMICRO-BLOGGINGRECOMMENDER SYSTEMSTEXT MININGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium, have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users´ interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people.Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaPergamon-Elsevier Science Ltd2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1169Armentano, Marcelo Gabriel; Godoy, Daniela Lis; Amandi, Analia Adriana; Followee recommendation based on text analysis of micro-blogging activity; Pergamon-Elsevier Science Ltd; Information Systems; 38; 8; 8-2013; 1116-11270306-4379enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.is.2013.05.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:45:25Zoai:ri.conicet.gov.ar:11336/1169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:45:25.931CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Followee recommendation based on text analysis of micro-blogging activity |
title |
Followee recommendation based on text analysis of micro-blogging activity |
spellingShingle |
Followee recommendation based on text analysis of micro-blogging activity Armentano, Marcelo Gabriel MICRO-BLOGGING RECOMMENDER SYSTEMS TEXT MINING |
title_short |
Followee recommendation based on text analysis of micro-blogging activity |
title_full |
Followee recommendation based on text analysis of micro-blogging activity |
title_fullStr |
Followee recommendation based on text analysis of micro-blogging activity |
title_full_unstemmed |
Followee recommendation based on text analysis of micro-blogging activity |
title_sort |
Followee recommendation based on text analysis of micro-blogging activity |
dc.creator.none.fl_str_mv |
Armentano, Marcelo Gabriel Godoy, Daniela Lis Amandi, Analia Adriana |
author |
Armentano, Marcelo Gabriel |
author_facet |
Armentano, Marcelo Gabriel Godoy, Daniela Lis Amandi, Analia Adriana |
author_role |
author |
author2 |
Godoy, Daniela Lis Amandi, Analia Adriana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MICRO-BLOGGING RECOMMENDER SYSTEMS TEXT MINING |
topic |
MICRO-BLOGGING RECOMMENDER SYSTEMS TEXT MINING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium, have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users´ interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people. Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium, have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users´ interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/1169 Armentano, Marcelo Gabriel; Godoy, Daniela Lis; Amandi, Analia Adriana; Followee recommendation based on text analysis of micro-blogging activity; Pergamon-Elsevier Science Ltd; Information Systems; 38; 8; 8-2013; 1116-1127 0306-4379 |
url |
http://hdl.handle.net/11336/1169 |
identifier_str_mv |
Armentano, Marcelo Gabriel; Godoy, Daniela Lis; Amandi, Analia Adriana; Followee recommendation based on text analysis of micro-blogging activity; Pergamon-Elsevier Science Ltd; Information Systems; 38; 8; 8-2013; 1116-1127 0306-4379 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.is.2013.05.009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083554171158528 |
score |
13.22299 |