Amaranth Milling Strategies and Fraction Characterization by FT-IR
- Autores
- Roa Acosta, Diego Fernando; Santagapita, Patricio Roman; Buera, Maria del Pilar; Tolaba, Marcela Patricia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Amaranth nutritional value has been widely recognized, but the required conditions for its processing cannot be adapted to traditional technologies. For the proposal of alternative strategies, the changes of several components should be understood. Enriched starch and lipid-protein fractions of amaranth flour upon different milling treatments were obtained and characterized by attenuated total reflectance-Fourier transform-infrared spectroscopy. Starch- and lipid-protein-enriched amaranth fractions were obtained by abrasive milling; amaranth starch was isolated by wet-milling procedure, and flour samples were obtained from planetary ball milling. Changes on starch, protein, and lipids relative contents, on starch crystallinity and on lipids and protein stability after milling and 6-month storage, were evaluated. The Fourier transform-infrared (FT-IR) spectroscopy peaks of the main grain components were identified in the middle-infrared range. By calculating the ratios between height intensities of selected specific peaks, several characteristics of the samples could be explained: increased protein content and lipid proportion of the enriched fraction; decrease of the starch crystallinity degree by abrasive milling and especially by ball milling due to starch amorphization during these processes; and lipids modification in milled and in 6-month aged samples. FT-IR analysis can be considered a rapid, nondestructive, solvent-free, sensitive, and useful tool to investigate starch, lipid, and protein modifications provoked by processing and storage as well as to determine, based on intensity ratio, the relative proportion of grain components within amaranth milling fractions. The abrasive milling associated to planetary ball milling to obtain modified different fractions is presented as an interesting strategy for the processing of amaranth grain.
Fil: Roa Acosta, Diego Fernando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santagapita, Patricio Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tolaba, Marcela Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Abrasive Milling
Amaranth
Ball Milling
Ft-Ir
Lipid-Protein Fraction
Starch - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/82687
Ver los metadatos del registro completo
id |
CONICETDig_cee995140e4eb56c5454a24cc13bcf86 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/82687 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Amaranth Milling Strategies and Fraction Characterization by FT-IRRoa Acosta, Diego FernandoSantagapita, Patricio RomanBuera, Maria del PilarTolaba, Marcela PatriciaAbrasive MillingAmaranthBall MillingFt-IrLipid-Protein FractionStarchhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Amaranth nutritional value has been widely recognized, but the required conditions for its processing cannot be adapted to traditional technologies. For the proposal of alternative strategies, the changes of several components should be understood. Enriched starch and lipid-protein fractions of amaranth flour upon different milling treatments were obtained and characterized by attenuated total reflectance-Fourier transform-infrared spectroscopy. Starch- and lipid-protein-enriched amaranth fractions were obtained by abrasive milling; amaranth starch was isolated by wet-milling procedure, and flour samples were obtained from planetary ball milling. Changes on starch, protein, and lipids relative contents, on starch crystallinity and on lipids and protein stability after milling and 6-month storage, were evaluated. The Fourier transform-infrared (FT-IR) spectroscopy peaks of the main grain components were identified in the middle-infrared range. By calculating the ratios between height intensities of selected specific peaks, several characteristics of the samples could be explained: increased protein content and lipid proportion of the enriched fraction; decrease of the starch crystallinity degree by abrasive milling and especially by ball milling due to starch amorphization during these processes; and lipids modification in milled and in 6-month aged samples. FT-IR analysis can be considered a rapid, nondestructive, solvent-free, sensitive, and useful tool to investigate starch, lipid, and protein modifications provoked by processing and storage as well as to determine, based on intensity ratio, the relative proportion of grain components within amaranth milling fractions. The abrasive milling associated to planetary ball milling to obtain modified different fractions is presented as an interesting strategy for the processing of amaranth grain.Fil: Roa Acosta, Diego Fernando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santagapita, Patricio Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tolaba, Marcela Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82687Roa Acosta, Diego Fernando; Santagapita, Patricio Roman; Buera, Maria del Pilar; Tolaba, Marcela Patricia; Amaranth Milling Strategies and Fraction Characterization by FT-IR; Springer; Food and Bioprocess Technology; 7; 3; 3-2014; 711-7181935-5130CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11947-013-1050-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s11947-013-1050-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:54Zoai:ri.conicet.gov.ar:11336/82687instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:55.021CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Amaranth Milling Strategies and Fraction Characterization by FT-IR |
title |
Amaranth Milling Strategies and Fraction Characterization by FT-IR |
spellingShingle |
Amaranth Milling Strategies and Fraction Characterization by FT-IR Roa Acosta, Diego Fernando Abrasive Milling Amaranth Ball Milling Ft-Ir Lipid-Protein Fraction Starch |
title_short |
Amaranth Milling Strategies and Fraction Characterization by FT-IR |
title_full |
Amaranth Milling Strategies and Fraction Characterization by FT-IR |
title_fullStr |
Amaranth Milling Strategies and Fraction Characterization by FT-IR |
title_full_unstemmed |
Amaranth Milling Strategies and Fraction Characterization by FT-IR |
title_sort |
Amaranth Milling Strategies and Fraction Characterization by FT-IR |
dc.creator.none.fl_str_mv |
Roa Acosta, Diego Fernando Santagapita, Patricio Roman Buera, Maria del Pilar Tolaba, Marcela Patricia |
author |
Roa Acosta, Diego Fernando |
author_facet |
Roa Acosta, Diego Fernando Santagapita, Patricio Roman Buera, Maria del Pilar Tolaba, Marcela Patricia |
author_role |
author |
author2 |
Santagapita, Patricio Roman Buera, Maria del Pilar Tolaba, Marcela Patricia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Abrasive Milling Amaranth Ball Milling Ft-Ir Lipid-Protein Fraction Starch |
topic |
Abrasive Milling Amaranth Ball Milling Ft-Ir Lipid-Protein Fraction Starch |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Amaranth nutritional value has been widely recognized, but the required conditions for its processing cannot be adapted to traditional technologies. For the proposal of alternative strategies, the changes of several components should be understood. Enriched starch and lipid-protein fractions of amaranth flour upon different milling treatments were obtained and characterized by attenuated total reflectance-Fourier transform-infrared spectroscopy. Starch- and lipid-protein-enriched amaranth fractions were obtained by abrasive milling; amaranth starch was isolated by wet-milling procedure, and flour samples were obtained from planetary ball milling. Changes on starch, protein, and lipids relative contents, on starch crystallinity and on lipids and protein stability after milling and 6-month storage, were evaluated. The Fourier transform-infrared (FT-IR) spectroscopy peaks of the main grain components were identified in the middle-infrared range. By calculating the ratios between height intensities of selected specific peaks, several characteristics of the samples could be explained: increased protein content and lipid proportion of the enriched fraction; decrease of the starch crystallinity degree by abrasive milling and especially by ball milling due to starch amorphization during these processes; and lipids modification in milled and in 6-month aged samples. FT-IR analysis can be considered a rapid, nondestructive, solvent-free, sensitive, and useful tool to investigate starch, lipid, and protein modifications provoked by processing and storage as well as to determine, based on intensity ratio, the relative proportion of grain components within amaranth milling fractions. The abrasive milling associated to planetary ball milling to obtain modified different fractions is presented as an interesting strategy for the processing of amaranth grain. Fil: Roa Acosta, Diego Fernando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Santagapita, Patricio Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tolaba, Marcela Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Amaranth nutritional value has been widely recognized, but the required conditions for its processing cannot be adapted to traditional technologies. For the proposal of alternative strategies, the changes of several components should be understood. Enriched starch and lipid-protein fractions of amaranth flour upon different milling treatments were obtained and characterized by attenuated total reflectance-Fourier transform-infrared spectroscopy. Starch- and lipid-protein-enriched amaranth fractions were obtained by abrasive milling; amaranth starch was isolated by wet-milling procedure, and flour samples were obtained from planetary ball milling. Changes on starch, protein, and lipids relative contents, on starch crystallinity and on lipids and protein stability after milling and 6-month storage, were evaluated. The Fourier transform-infrared (FT-IR) spectroscopy peaks of the main grain components were identified in the middle-infrared range. By calculating the ratios between height intensities of selected specific peaks, several characteristics of the samples could be explained: increased protein content and lipid proportion of the enriched fraction; decrease of the starch crystallinity degree by abrasive milling and especially by ball milling due to starch amorphization during these processes; and lipids modification in milled and in 6-month aged samples. FT-IR analysis can be considered a rapid, nondestructive, solvent-free, sensitive, and useful tool to investigate starch, lipid, and protein modifications provoked by processing and storage as well as to determine, based on intensity ratio, the relative proportion of grain components within amaranth milling fractions. The abrasive milling associated to planetary ball milling to obtain modified different fractions is presented as an interesting strategy for the processing of amaranth grain. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/82687 Roa Acosta, Diego Fernando; Santagapita, Patricio Roman; Buera, Maria del Pilar; Tolaba, Marcela Patricia; Amaranth Milling Strategies and Fraction Characterization by FT-IR; Springer; Food and Bioprocess Technology; 7; 3; 3-2014; 711-718 1935-5130 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/82687 |
identifier_str_mv |
Roa Acosta, Diego Fernando; Santagapita, Patricio Roman; Buera, Maria del Pilar; Tolaba, Marcela Patricia; Amaranth Milling Strategies and Fraction Characterization by FT-IR; Springer; Food and Bioprocess Technology; 7; 3; 3-2014; 711-718 1935-5130 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11947-013-1050-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11947-013-1050-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269980039577600 |
score |
13.13397 |