Tejaas: reverse regression increases power for detecting trans-eQTLs
- Autores
- Banerjee, Saikat; Simonetti, Franco Lucio; Detrois, Kira E.; Kaphle, Anubhav; Mitra, Raktim; Nagial, Rahul; Söding, Johannes
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Trans-acting expression quantitative trait loci (trans-eQTLs) account for ≥70% expression heritability and could therefore facilitate uncovering mechanisms underlying the origination of complex diseases. Identifying trans-eQTLs is challenging because of small effect sizes, tissue specificity, and a severe multiple-testing burden. Tejaas predicts trans-eQTLs by performing L2-regularized “reverse” multiple regression of each SNP on all genes, aggregating evidence from many small trans-effects while being unaffected by the strong expression correlations. Combined with a novel unsupervised k-nearest neighbor method to remove confounders, Tejaas predicts 18851 unique trans-eQTLs across 49 tissues from GTEx. They are enriched in open chromatin, enhancers, and other regulatory regions. Many overlap with disease-associated SNPs, pointing to tissue-specific transcriptional regulation mechanisms.
Fil: Banerjee, Saikat. Max Planck Institute For Biophysical Chemistry; Alemania
Fil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Max Planck Institute For Biophysical Chemistry; Alemania
Fil: Detrois, Kira E.. Max Planck Institute For Biophysical Chemistry; Alemania. Universität Göttingen; Alemania
Fil: Kaphle, Anubhav. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; Alemania
Fil: Mitra, Raktim. Indian Institute of Technology; India
Fil: Nagial, Rahul. Indian Institute of Technology; India
Fil: Söding, Johannes. Max Planck Institute For Biophysical Chemistry; Alemania. University of Göttingen; Alemania - Materia
-
Trans-eQTLs
Multiple linear regression
GTEx - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167151
Ver los metadatos del registro completo
| id |
CONICETDig_cec70afe8cea2ec21c90ab935e10da3f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167151 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Tejaas: reverse regression increases power for detecting trans-eQTLsBanerjee, SaikatSimonetti, Franco LucioDetrois, Kira E.Kaphle, AnubhavMitra, RaktimNagial, RahulSöding, JohannesTrans-eQTLsMultiple linear regressionGTExhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Trans-acting expression quantitative trait loci (trans-eQTLs) account for ≥70% expression heritability and could therefore facilitate uncovering mechanisms underlying the origination of complex diseases. Identifying trans-eQTLs is challenging because of small effect sizes, tissue specificity, and a severe multiple-testing burden. Tejaas predicts trans-eQTLs by performing L2-regularized “reverse” multiple regression of each SNP on all genes, aggregating evidence from many small trans-effects while being unaffected by the strong expression correlations. Combined with a novel unsupervised k-nearest neighbor method to remove confounders, Tejaas predicts 18851 unique trans-eQTLs across 49 tissues from GTEx. They are enriched in open chromatin, enhancers, and other regulatory regions. Many overlap with disease-associated SNPs, pointing to tissue-specific transcriptional regulation mechanisms.Fil: Banerjee, Saikat. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Detrois, Kira E.. Max Planck Institute For Biophysical Chemistry; Alemania. Universität Göttingen; AlemaniaFil: Kaphle, Anubhav. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Mitra, Raktim. Indian Institute of Technology; IndiaFil: Nagial, Rahul. Indian Institute of Technology; IndiaFil: Söding, Johannes. Max Planck Institute For Biophysical Chemistry; Alemania. University of Göttingen; AlemaniaBioMed Central Ltd2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167151Banerjee, Saikat; Simonetti, Franco Lucio; Detrois, Kira E.; Kaphle, Anubhav; Mitra, Raktim; et al.; Tejaas: reverse regression increases power for detecting trans-eQTLs; BioMed Central Ltd; Genome Biology; 22; 1; 12-2021; 1-161474-760XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02361-8info:eu-repo/semantics/altIdentifier/doi/10.1186/s13059-021-02361-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:34:43Zoai:ri.conicet.gov.ar:11336/167151instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:34:43.389CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Tejaas: reverse regression increases power for detecting trans-eQTLs |
| title |
Tejaas: reverse regression increases power for detecting trans-eQTLs |
| spellingShingle |
Tejaas: reverse regression increases power for detecting trans-eQTLs Banerjee, Saikat Trans-eQTLs Multiple linear regression GTEx |
| title_short |
Tejaas: reverse regression increases power for detecting trans-eQTLs |
| title_full |
Tejaas: reverse regression increases power for detecting trans-eQTLs |
| title_fullStr |
Tejaas: reverse regression increases power for detecting trans-eQTLs |
| title_full_unstemmed |
Tejaas: reverse regression increases power for detecting trans-eQTLs |
| title_sort |
Tejaas: reverse regression increases power for detecting trans-eQTLs |
| dc.creator.none.fl_str_mv |
Banerjee, Saikat Simonetti, Franco Lucio Detrois, Kira E. Kaphle, Anubhav Mitra, Raktim Nagial, Rahul Söding, Johannes |
| author |
Banerjee, Saikat |
| author_facet |
Banerjee, Saikat Simonetti, Franco Lucio Detrois, Kira E. Kaphle, Anubhav Mitra, Raktim Nagial, Rahul Söding, Johannes |
| author_role |
author |
| author2 |
Simonetti, Franco Lucio Detrois, Kira E. Kaphle, Anubhav Mitra, Raktim Nagial, Rahul Söding, Johannes |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
Trans-eQTLs Multiple linear regression GTEx |
| topic |
Trans-eQTLs Multiple linear regression GTEx |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Trans-acting expression quantitative trait loci (trans-eQTLs) account for ≥70% expression heritability and could therefore facilitate uncovering mechanisms underlying the origination of complex diseases. Identifying trans-eQTLs is challenging because of small effect sizes, tissue specificity, and a severe multiple-testing burden. Tejaas predicts trans-eQTLs by performing L2-regularized “reverse” multiple regression of each SNP on all genes, aggregating evidence from many small trans-effects while being unaffected by the strong expression correlations. Combined with a novel unsupervised k-nearest neighbor method to remove confounders, Tejaas predicts 18851 unique trans-eQTLs across 49 tissues from GTEx. They are enriched in open chromatin, enhancers, and other regulatory regions. Many overlap with disease-associated SNPs, pointing to tissue-specific transcriptional regulation mechanisms. Fil: Banerjee, Saikat. Max Planck Institute For Biophysical Chemistry; Alemania Fil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Max Planck Institute For Biophysical Chemistry; Alemania Fil: Detrois, Kira E.. Max Planck Institute For Biophysical Chemistry; Alemania. Universität Göttingen; Alemania Fil: Kaphle, Anubhav. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; Alemania Fil: Mitra, Raktim. Indian Institute of Technology; India Fil: Nagial, Rahul. Indian Institute of Technology; India Fil: Söding, Johannes. Max Planck Institute For Biophysical Chemistry; Alemania. University of Göttingen; Alemania |
| description |
Trans-acting expression quantitative trait loci (trans-eQTLs) account for ≥70% expression heritability and could therefore facilitate uncovering mechanisms underlying the origination of complex diseases. Identifying trans-eQTLs is challenging because of small effect sizes, tissue specificity, and a severe multiple-testing burden. Tejaas predicts trans-eQTLs by performing L2-regularized “reverse” multiple regression of each SNP on all genes, aggregating evidence from many small trans-effects while being unaffected by the strong expression correlations. Combined with a novel unsupervised k-nearest neighbor method to remove confounders, Tejaas predicts 18851 unique trans-eQTLs across 49 tissues from GTEx. They are enriched in open chromatin, enhancers, and other regulatory regions. Many overlap with disease-associated SNPs, pointing to tissue-specific transcriptional regulation mechanisms. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167151 Banerjee, Saikat; Simonetti, Franco Lucio; Detrois, Kira E.; Kaphle, Anubhav; Mitra, Raktim; et al.; Tejaas: reverse regression increases power for detecting trans-eQTLs; BioMed Central Ltd; Genome Biology; 22; 1; 12-2021; 1-16 1474-760X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/167151 |
| identifier_str_mv |
Banerjee, Saikat; Simonetti, Franco Lucio; Detrois, Kira E.; Kaphle, Anubhav; Mitra, Raktim; et al.; Tejaas: reverse regression increases power for detecting trans-eQTLs; BioMed Central Ltd; Genome Biology; 22; 1; 12-2021; 1-16 1474-760X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02361-8 info:eu-repo/semantics/altIdentifier/doi/10.1186/s13059-021-02361-8 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
BioMed Central Ltd |
| publisher.none.fl_str_mv |
BioMed Central Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976755531350016 |
| score |
13.087074 |