The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase
- Autores
- Cerqueira, N.M.F.S.A.; Gonzalez, P.J.; Brondino, Carlos Dante; Romão, M.J.; Romão, C.C.; Moura, I.; Moura, J.J.G.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton-electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo-dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl-dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur-based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover.
Fil: Cerqueira, N.M.F.S.A.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal
Fil: Gonzalez, P.J.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal
Fil: Brondino, Carlos Dante. Universidad Nacional del Litoral; Argentina
Fil: Romão, M.J.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal
Fil: Romão, C.C.. Instituto de Tecnologia Qu&
Fil: Moura, I.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal
Fil: Moura, J.J.G.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal - Materia
-
CATALYTIC MECHANISM
DFT
MOLYBDENUM
NITRATE REDUCTASE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97874
Ver los metadatos del registro completo
id |
CONICETDig_ce8a7f9e97c75d51855147770f36eea8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97874 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductaseCerqueira, N.M.F.S.A.Gonzalez, P.J.Brondino, Carlos DanteRomão, M.J.Romão, C.C.Moura, I.Moura, J.J.G.CATALYTIC MECHANISMDFTMOLYBDENUMNITRATE REDUCTASEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton-electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo-dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl-dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur-based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover.Fil: Cerqueira, N.M.F.S.A.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; PortugalFil: Gonzalez, P.J.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; PortugalFil: Brondino, Carlos Dante. Universidad Nacional del Litoral; ArgentinaFil: Romão, M.J.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; PortugalFil: Romão, C.C.. Instituto de Tecnologia Qu& Fil: Moura, I.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; PortugalFil: Moura, J.J.G.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; PortugalJohn Wiley & Sons Inc2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97874Cerqueira, N.M.F.S.A.; Gonzalez, P.J.; Brondino, Carlos Dante; Romão, M.J.; Romão, C.C.; et al.; The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase; John Wiley & Sons Inc; Journal of Computational Chemistry; 30; 15; 11-2009; 2466-24840192-8651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www3.interscience.wiley.com/journal/122314597/abstract?CRETRY=1&SRETRY=0info:eu-repo/semantics/altIdentifier/doi/10.1002/jcc.21280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:56Zoai:ri.conicet.gov.ar:11336/97874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:57.073CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase |
title |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase |
spellingShingle |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase Cerqueira, N.M.F.S.A. CATALYTIC MECHANISM DFT MOLYBDENUM NITRATE REDUCTASE |
title_short |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase |
title_full |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase |
title_fullStr |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase |
title_full_unstemmed |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase |
title_sort |
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase |
dc.creator.none.fl_str_mv |
Cerqueira, N.M.F.S.A. Gonzalez, P.J. Brondino, Carlos Dante Romão, M.J. Romão, C.C. Moura, I. Moura, J.J.G. |
author |
Cerqueira, N.M.F.S.A. |
author_facet |
Cerqueira, N.M.F.S.A. Gonzalez, P.J. Brondino, Carlos Dante Romão, M.J. Romão, C.C. Moura, I. Moura, J.J.G. |
author_role |
author |
author2 |
Gonzalez, P.J. Brondino, Carlos Dante Romão, M.J. Romão, C.C. Moura, I. Moura, J.J.G. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
CATALYTIC MECHANISM DFT MOLYBDENUM NITRATE REDUCTASE |
topic |
CATALYTIC MECHANISM DFT MOLYBDENUM NITRATE REDUCTASE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton-electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo-dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl-dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur-based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover. Fil: Cerqueira, N.M.F.S.A.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal Fil: Gonzalez, P.J.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal Fil: Brondino, Carlos Dante. Universidad Nacional del Litoral; Argentina Fil: Romão, M.J.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal Fil: Romão, C.C.. Instituto de Tecnologia Qu& Fil: Moura, I.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal Fil: Moura, J.J.G.. Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa; Portugal |
description |
The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton-electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo-dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl-dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur-based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97874 Cerqueira, N.M.F.S.A.; Gonzalez, P.J.; Brondino, Carlos Dante; Romão, M.J.; Romão, C.C.; et al.; The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase; John Wiley & Sons Inc; Journal of Computational Chemistry; 30; 15; 11-2009; 2466-2484 0192-8651 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97874 |
identifier_str_mv |
Cerqueira, N.M.F.S.A.; Gonzalez, P.J.; Brondino, Carlos Dante; Romão, M.J.; Romão, C.C.; et al.; The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase; John Wiley & Sons Inc; Journal of Computational Chemistry; 30; 15; 11-2009; 2466-2484 0192-8651 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www3.interscience.wiley.com/journal/122314597/abstract?CRETRY=1&SRETRY=0 info:eu-repo/semantics/altIdentifier/doi/10.1002/jcc.21280 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269882489503744 |
score |
13.13397 |