Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
- Autores
- Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles.
Fil: Soldera, Marcos Maximiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Estrada, Emiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina
Fil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina - Materia
-
FINITE ELEMENT METHOD
LIGHT TRAPPING
ORGANIC SOLAR CELLS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111156
Ver los metadatos del registro completo
id |
CONICETDig_cdc8c7fa8a7f59d531396f2180e16793 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111156 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cellsSoldera, Marcos MaximilianoEstrada, EmilianoTaretto, Kurt RodolfoFINITE ELEMENT METHODLIGHT TRAPPINGORGANIC SOLAR CELLShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles.Fil: Soldera, Marcos Maximiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Estrada, Emiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; ArgentinaFil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; ArgentinaWiley2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111156Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo; Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells; Wiley; Physica Status Solidi A-applied Research; 210; 4-2013; 1345-13520031-89651521-396XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/pssa.201228637info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201228637info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:19Zoai:ri.conicet.gov.ar:11336/111156instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:20.164CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells |
title |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells |
spellingShingle |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells Soldera, Marcos Maximiliano FINITE ELEMENT METHOD LIGHT TRAPPING ORGANIC SOLAR CELLS |
title_short |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells |
title_full |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells |
title_fullStr |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells |
title_full_unstemmed |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells |
title_sort |
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells |
dc.creator.none.fl_str_mv |
Soldera, Marcos Maximiliano Estrada, Emiliano Taretto, Kurt Rodolfo |
author |
Soldera, Marcos Maximiliano |
author_facet |
Soldera, Marcos Maximiliano Estrada, Emiliano Taretto, Kurt Rodolfo |
author_role |
author |
author2 |
Estrada, Emiliano Taretto, Kurt Rodolfo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FINITE ELEMENT METHOD LIGHT TRAPPING ORGANIC SOLAR CELLS |
topic |
FINITE ELEMENT METHOD LIGHT TRAPPING ORGANIC SOLAR CELLS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles. Fil: Soldera, Marcos Maximiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Estrada, Emiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina Fil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina |
description |
Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111156 Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo; Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells; Wiley; Physica Status Solidi A-applied Research; 210; 4-2013; 1345-1352 0031-8965 1521-396X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111156 |
identifier_str_mv |
Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo; Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells; Wiley; Physica Status Solidi A-applied Research; 210; 4-2013; 1345-1352 0031-8965 1521-396X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/pssa.201228637 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201228637 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269954008678400 |
score |
13.13397 |