Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells

Autores
Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles.
Fil: Soldera, Marcos Maximiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Estrada, Emiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina
Fil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina
Materia
FINITE ELEMENT METHOD
LIGHT TRAPPING
ORGANIC SOLAR CELLS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111156

id CONICETDig_cdc8c7fa8a7f59d531396f2180e16793
oai_identifier_str oai:ri.conicet.gov.ar:11336/111156
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cellsSoldera, Marcos MaximilianoEstrada, EmilianoTaretto, Kurt RodolfoFINITE ELEMENT METHODLIGHT TRAPPINGORGANIC SOLAR CELLShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles.Fil: Soldera, Marcos Maximiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Estrada, Emiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; ArgentinaFil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; ArgentinaWiley2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111156Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo; Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells; Wiley; Physica Status Solidi A-applied Research; 210; 4-2013; 1345-13520031-89651521-396XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/pssa.201228637info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201228637info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:19Zoai:ri.conicet.gov.ar:11336/111156instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:20.164CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
title Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
spellingShingle Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
Soldera, Marcos Maximiliano
FINITE ELEMENT METHOD
LIGHT TRAPPING
ORGANIC SOLAR CELLS
title_short Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
title_full Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
title_fullStr Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
title_full_unstemmed Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
title_sort Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells
dc.creator.none.fl_str_mv Soldera, Marcos Maximiliano
Estrada, Emiliano
Taretto, Kurt Rodolfo
author Soldera, Marcos Maximiliano
author_facet Soldera, Marcos Maximiliano
Estrada, Emiliano
Taretto, Kurt Rodolfo
author_role author
author2 Estrada, Emiliano
Taretto, Kurt Rodolfo
author2_role author
author
dc.subject.none.fl_str_mv FINITE ELEMENT METHOD
LIGHT TRAPPING
ORGANIC SOLAR CELLS
topic FINITE ELEMENT METHOD
LIGHT TRAPPING
ORGANIC SOLAR CELLS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles.
Fil: Soldera, Marcos Maximiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Estrada, Emiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina
Fil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina
description Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111156
Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo; Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells; Wiley; Physica Status Solidi A-applied Research; 210; 4-2013; 1345-1352
0031-8965
1521-396X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111156
identifier_str_mv Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo; Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells; Wiley; Physica Status Solidi A-applied Research; 210; 4-2013; 1345-1352
0031-8965
1521-396X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/pssa.201228637
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201228637
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269954008678400
score 13.13397