A simple method for recommending specialized specifications for diabetes monitoring
- Autores
- Avila, Luis Omar; Errecalde, Marcelo Luis
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Under glycemic variability, a characterization of the desired blood glucose (BG) behavior is needed to assess if a given artificial pancreas (AP) respects its specification. The specification is an essential element to detect any deviation from an adequate insulin policy. Specializing the monitoring specification is therefore of utmost importance as existing guidelines for diabetes management are general and do not take into account how the personal factors and lifestyle affect the glycemic behavior. Surely, recommending personalized monitoring specifications may provide flexible and appropriate treatment goals to be attained by diabetic patients in order to account for their actual treatment needs. In this work, we use machine learning models to characterize glycemic behavior in synthetic healthy individuals. To account for the day-by-day fluctuation in BG levels, we use a stochastic process superimposed on a deterministic model of the glucose-insulin dynamics. The obtained characterization of the glycemic behavior in healthy individuals is then used as the target class to predict, and thus recommend, personalized monitoring specifications to diabetic patients. Results show that the approach stands as a feasible strategy to recommending appropriate and realistic monitoring goals for diabetic patients based on healthy individuals who share a similar glycemic behavior. Eventually, the incorporation of a recommender approach on an intelligent monitoring system for the AP will allow on-line adaptation of the treatment requirements for each patient.
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina - Materia
-
COLD-START RECOMMENDATION
GLYCEMIC CONTROL
MACHINE LEARNING
MONITORING SPECIFICATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/148694
Ver los metadatos del registro completo
id |
CONICETDig_cd4db6533acdf1f8c767f110d69b8a4b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/148694 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A simple method for recommending specialized specifications for diabetes monitoringAvila, Luis OmarErrecalde, Marcelo LuisCOLD-START RECOMMENDATIONGLYCEMIC CONTROLMACHINE LEARNINGMONITORING SPECIFICATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Under glycemic variability, a characterization of the desired blood glucose (BG) behavior is needed to assess if a given artificial pancreas (AP) respects its specification. The specification is an essential element to detect any deviation from an adequate insulin policy. Specializing the monitoring specification is therefore of utmost importance as existing guidelines for diabetes management are general and do not take into account how the personal factors and lifestyle affect the glycemic behavior. Surely, recommending personalized monitoring specifications may provide flexible and appropriate treatment goals to be attained by diabetic patients in order to account for their actual treatment needs. In this work, we use machine learning models to characterize glycemic behavior in synthetic healthy individuals. To account for the day-by-day fluctuation in BG levels, we use a stochastic process superimposed on a deterministic model of the glucose-insulin dynamics. The obtained characterization of the glycemic behavior in healthy individuals is then used as the target class to predict, and thus recommend, personalized monitoring specifications to diabetic patients. Results show that the approach stands as a feasible strategy to recommending appropriate and realistic monitoring goals for diabetic patients based on healthy individuals who share a similar glycemic behavior. Eventually, the incorporation of a recommender approach on an intelligent monitoring system for the AP will allow on-line adaptation of the treatment requirements for each patient.Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaPergamon-Elsevier Science Ltd2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148694Avila, Luis Omar; Errecalde, Marcelo Luis; A simple method for recommending specialized specifications for diabetes monitoring; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 91; 1-2018; 298-3090957-41741873-6793CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417417306267info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2017.09.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:37Zoai:ri.conicet.gov.ar:11336/148694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:37.556CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A simple method for recommending specialized specifications for diabetes monitoring |
title |
A simple method for recommending specialized specifications for diabetes monitoring |
spellingShingle |
A simple method for recommending specialized specifications for diabetes monitoring Avila, Luis Omar COLD-START RECOMMENDATION GLYCEMIC CONTROL MACHINE LEARNING MONITORING SPECIFICATION |
title_short |
A simple method for recommending specialized specifications for diabetes monitoring |
title_full |
A simple method for recommending specialized specifications for diabetes monitoring |
title_fullStr |
A simple method for recommending specialized specifications for diabetes monitoring |
title_full_unstemmed |
A simple method for recommending specialized specifications for diabetes monitoring |
title_sort |
A simple method for recommending specialized specifications for diabetes monitoring |
dc.creator.none.fl_str_mv |
Avila, Luis Omar Errecalde, Marcelo Luis |
author |
Avila, Luis Omar |
author_facet |
Avila, Luis Omar Errecalde, Marcelo Luis |
author_role |
author |
author2 |
Errecalde, Marcelo Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
COLD-START RECOMMENDATION GLYCEMIC CONTROL MACHINE LEARNING MONITORING SPECIFICATION |
topic |
COLD-START RECOMMENDATION GLYCEMIC CONTROL MACHINE LEARNING MONITORING SPECIFICATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Under glycemic variability, a characterization of the desired blood glucose (BG) behavior is needed to assess if a given artificial pancreas (AP) respects its specification. The specification is an essential element to detect any deviation from an adequate insulin policy. Specializing the monitoring specification is therefore of utmost importance as existing guidelines for diabetes management are general and do not take into account how the personal factors and lifestyle affect the glycemic behavior. Surely, recommending personalized monitoring specifications may provide flexible and appropriate treatment goals to be attained by diabetic patients in order to account for their actual treatment needs. In this work, we use machine learning models to characterize glycemic behavior in synthetic healthy individuals. To account for the day-by-day fluctuation in BG levels, we use a stochastic process superimposed on a deterministic model of the glucose-insulin dynamics. The obtained characterization of the glycemic behavior in healthy individuals is then used as the target class to predict, and thus recommend, personalized monitoring specifications to diabetic patients. Results show that the approach stands as a feasible strategy to recommending appropriate and realistic monitoring goals for diabetic patients based on healthy individuals who share a similar glycemic behavior. Eventually, the incorporation of a recommender approach on an intelligent monitoring system for the AP will allow on-line adaptation of the treatment requirements for each patient. Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina |
description |
Under glycemic variability, a characterization of the desired blood glucose (BG) behavior is needed to assess if a given artificial pancreas (AP) respects its specification. The specification is an essential element to detect any deviation from an adequate insulin policy. Specializing the monitoring specification is therefore of utmost importance as existing guidelines for diabetes management are general and do not take into account how the personal factors and lifestyle affect the glycemic behavior. Surely, recommending personalized monitoring specifications may provide flexible and appropriate treatment goals to be attained by diabetic patients in order to account for their actual treatment needs. In this work, we use machine learning models to characterize glycemic behavior in synthetic healthy individuals. To account for the day-by-day fluctuation in BG levels, we use a stochastic process superimposed on a deterministic model of the glucose-insulin dynamics. The obtained characterization of the glycemic behavior in healthy individuals is then used as the target class to predict, and thus recommend, personalized monitoring specifications to diabetic patients. Results show that the approach stands as a feasible strategy to recommending appropriate and realistic monitoring goals for diabetic patients based on healthy individuals who share a similar glycemic behavior. Eventually, the incorporation of a recommender approach on an intelligent monitoring system for the AP will allow on-line adaptation of the treatment requirements for each patient. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/148694 Avila, Luis Omar; Errecalde, Marcelo Luis; A simple method for recommending specialized specifications for diabetes monitoring; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 91; 1-2018; 298-309 0957-4174 1873-6793 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/148694 |
identifier_str_mv |
Avila, Luis Omar; Errecalde, Marcelo Luis; A simple method for recommending specialized specifications for diabetes monitoring; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 91; 1-2018; 298-309 0957-4174 1873-6793 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417417306267 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2017.09.019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269649426710528 |
score |
13.13397 |